
	

https://vevasura.tugoduzak.com/712278446187715241493560730328946895139880?tiwesuxizufofofujijonajaxeriselubugapugagelewexawunumifetojako=nunezanujizibegefubutefakipaladoregimodatezuvaredevepexufexatoduvasixomagavibufuzepodosonotuvijufebamagixibuvekevefogosuvukiveroturezetiserapurugogaxopinimoropefabekinisamelarozakinawimexokekilafepafid&utm_term=what+is+web+scraper+in+python&zokivarebarapovarefajepedevupadebivagirufiruxamatafisaripukisisofikogi=jeluboxogemabovipowogavutotegivosevipisofofexavujuredarawawabejakaluxewevurunasipakesibivutomilajuritobufebivagomovo

Interested	in	learning	how	to	build	a	web	scraping	tool	but	not	sure	what	coding	languages	you	need	to	master,	or	how	to	implement	one?	If	so,	you’re	not	alone.	There	are	thousands	of	new	and	intermediate	developers	who	are	looking	to	learn	how	to	code	useful,	efficient	web	scrapers	using	coding	languages	they	already	know.	Why	is	there	so	much
interest	in	this	skill?	Because	knowing	how	to	code	a	web	scraper,	or	data	extraction	tool,	is	highly	prized	in	the	tech	job	market.	With	so	much	data	readily	available	online,	companies	in	a	variety	of	industries	need	a	reliable,	cost-effective	–	and	again,	efficient	–	way	to	get	to	the	structured	and	semi-structured	data	that	they	need	for	research,
competitive	analysis,	debugging,	etc.	From	ecommerce	to	real	estate	to	stock	trading,	web	scraping	tools	can	provide	updated	data	in	near	real-time	for	businesses	as	well	as	their	developers.	If	you	know	how	to	code	a	scraping	tool,	you’ll	likely	have	no	shortage	of	job	opportunities.		Free	web	scraping	guide.	Download	our	beginner-friendly	web
scraping	guide	[PDF]	and	learn	how	to	collect	and	use	publicly	available	data.	Luckily,	there	are	plenty	of	online	courses	to	learn	how	to	code	a	web	scraping	script	or	app.	From	beginners	to	professional	developers,	here	are	the	best	courses	to	learn	the	mechanics	behind	web	scraping	fast	(and	without	leaving	your	house!)	That	said,	each	of	the
courses	below	does	require	at	least	basic	knowledge	of	more	advanced	coding	languages	like	Python	or	Javascript,	so	if	you’re	still	learning	the	basic	front-end	languages,	it’s	best	to	take	intro	courses	in	more	advanced	languages	before	diving	into	any	of	the	options	below.	Pre-requisites:	Basic	Python	Knowledge	Cost:	$-$$*	This	easy-to-follow	course
for	beginners	teaches	the	basics	of	web	scraping	with	Python.	In	addition	to	getting	acquainted	with	Beautiful	Soup	and	how	to	work	with	static	files,	you’ll	also	learn	a	couple	of	practical	projects.	If	you’re	looking	for	a	user-friendly	course	on	how	to	build	out	simple	email	automation	scripts,	or	extract	data	from	an	existing	site,	you’ll	want	to	check
out	this	highly-rated	Udemy	course.	*Udemy	offers	several	limited-time-only	discount	periods	per	year,	so	you	can	get	50-80%	discounts	on	course	prices	if	you	time	it	right.	This	course	is	rated	9.2/10	on	Coursemarks	Pre-requisites:	Basic	Python	knowledge,	Python	3,	Anaconda	distribution	Cost:	$-$$	Slightly	more	advanced,	this	best-selling	course
also	covers	the	fundamentals	of	web	scraping	with	Python	–	but	with	greater	attention	paid	to	some	of	the	more	challenging	situations	you	might	run	into	in	deploying	a	web	scraper.	Topics	like	scraping	‘gated’	or	‘locked’	data,	implementing	APIs,	scraping	Javascript	and	limiting	the	number	of	requests	are	all	hurdles	that	you’ll	likely	run	into	in	real-
world	scraping	scenarios.	As	with	the	Beginners	course	above,	the	focus	here	is	not	only	on	teaching	the	fundamentals,	but	also	encourages	students	to	use	their	newfound	skills	with	practical,	in-course	scraping	projects.	Pre-requisites:	part	of	the	Python	3	Programming	Specialization,	so	Python	Basics,	and	Python	Functions,	Files	and	Dictionaries
courses	are	recommended	Cost:	Free	–	$$*	This	course	from	the	University	of	Michigan	will	teach	you	how	to	create	and	use	data	extraction	across	a	host	of	different	use	cases.	U	of	M	is	recognized	for	high-quality	course	offerings	for	developers,	providing	both	absolute	beginners	and	professionals	with	practical	coding	education.	You’ll	learn	about
complex	data	structures,	how	to	process	json	data,	and	caching	requested	data	–	in	addition	to	a	range	of	other	topics	that	will	help	you	master	data	collection	with	Python.	*Most	Coursera	courses	–	this	one	included	–	can	be	taken	for	free	after	filling	out	a	short	Financial	Aid	application.	If	you	don’t	need	a	Certificate	of	Completion,	this	is	a	cost-
effective	way	to	learn	new	skills	that	will	help	your	career.	Pre-requisites:	Intermediate	Python	Cost:	$-$$*	In	17	video	modules	that	span	4	hours,	this	course	is	a	deep	dive	into	the	tools	and	technologies	that	underpin	data	scraping.	With	a	greater	emphasis	on	understanding	the	structure	of	html	and	XPath	notation,	DataCamp’s	Web	Scraping	in
Python	course	aims	to	teach	users	how	to	build	scraping	tools	that	scale.	This	course	leans	heavily	on	creating	web	scrapers	with	the	Scrapy	Python	library,	but	learners	can	easily	adapt	their	newfound	knowledge	to	extract	data	with	BeautifulSoup	or	Selenium.	This	is	a	great	option	for	those	on	a	data	science	career	track,	covering	creating
automated	data	scraping	tools	before	you	dive	into	how	to	import	and	clean	extracted	data	in	the	follow-up	course.	*DataCamp	offers	several	reasonable	pricing	options,	and	offers	students	a	free	month	to	try	their	platform	before	committing	to	a	monthly	rate.	Pre-requisites:	JavaScript	Cost:	$-$$$*		If	you’re	looking	to	jump	into	practical	uses	of	data
scraping	as	quickly	as	possible,	this	robust	course	from	Packt	is	likely	your	best	bet.	The	course	modules	cover	a	variety	of	real-world	scenarios,	including	scraping	from	search	engines,	hotel	and	ecommerce	websites	–	each	with	a	different	coding	library,	including	CasparJS	and	Cheerio.	The	final	module	covers	saving	extracted	data	to	AWS	using	a
NodeJS	server.	They	also	offer	the	code	bundle	for	the	course	on	GitHub,	so	if	you’re	already	a	GitHub	user	–	and	who	isn’t?	–	you	have	quick	access	to	dig	into	the	code	immediately	and	start	scraping.	Packt	offers	a	robust	library	of	courses	in	a	variety	of	formats,	so	if	you	learn	better	with	an	ebook	than	with	video	instruction,	this	is	a	good	option	for
you.	*Offers	competitive	pricing,	and	10-day	free	trial	is	available	for	new	users	Whether	you’re	a	coding	‘hobbyist’	looking	to	expand	your	skills,	or	a	professional	developer	adding	to	your	resume,	knowing	how	to	create	a	web	scraper	is	a	useful,	practical	data	analysis	skillset	in	this	era	of	Big	Data.	With	so	much	information	readily	available	online,
modern	companies	are	looking	to	access	that	data,	and	to	use	it	to	improve	their	own	products	and	services.	In	learning	web	scraping	basics,	you’ll	help	them	unlock	new	opportunities	to	grow.		Last	Updated	on	June	16,	2025Let	me	take	you	back	to	the	first	time	I	tried	to	scrape	a	website	for	business	data.	I	was	sitting	at	my	kitchen	table,	a	cup	of
coffee	in	one	hand	and	a	half-baked	Python	script	in	the	other,	trying	to	wrangle	product	prices	from	a	competitor’s	site.	I	thought,	“How	hard	could	this	be?”	Spoiler:	I	ended	up	with	a	CSV	file	full	of	empty	cells	and	a	newfound	respect	for	anyone	who	claims	to	“just	automate	it	with	Python.”	Fast	forward	to	2025,	and	web	scraping	has	become	the
backbone	of	data-driven	business—fueling	sales,	ecommerce,	marketing,	and	operations	teams	with	real-time	insights	that	would	be	impossible	to	gather	manually.	But	here’s	the	kicker:	while	Python	web	scraping	is	more	powerful	than	ever,	the	landscape	is	shifting.	The	market	for	web	scraping	is	booming—valued	at	.	Nearly	to	drive	smarter
decisions.	Yet,	the	real	challenge	isn’t	just	about	writing	code—it’s	about	choosing	the	right	tool	for	the	job,	scaling	up,	and	not	losing	your	mind	maintaining	a	zoo	of	scripts.	In	this	ultimate	guide,	I’ll	walk	you	through	every	major	Python	web	scraping	library	(with	code	examples),	real	business	use	cases,	and	why,	despite	my	love	for	Python,	I	think
no-code	solutions	like	are	the	best	bet	for	most	business	users	in	2025.	What	is	Python	Web	Scraping?	A	Non-Technical	Introduction	Let’s	break	it	down:	web	scraping	is	just	a	fancy	way	of	saying	“automated	copy-paste.”	Instead	of	hiring	an	army	of	interns	to	collect	product	prices,	contact	lists,	or	reviews,	you	use	software	to	visit	web	pages,	extract
the	data	you	need,	and	spit	it	out	into	a	spreadsheet	or	database.	Python	web	scraping	means	you’re	using	Python	scripts	to	do	this—fetching	web	pages,	parsing	the	HTML,	and	pulling	out	the	nuggets	of	information	you	care	about.	Think	of	it	as	sending	a	digital	assistant	to	browse	websites	for	you,	24/7,	never	needing	a	coffee	break.	The	most
common	data	types	scraped	by	businesses?	Pricing	info,	product	details,	contacts,	reviews,	images,	news	articles,	and	even	real	estate	listings.	And	while	some	sites	offer	APIs	for	this,	most	don’t—or	they	limit	what	you	can	access.	That’s	where	web	scraping	comes	in:	it	lets	you	tap	into	publicly	available	data	at	scale,	even	when	there’s	no	official
“download”	button	in	sight.	Why	Python	Web	Scraping	Matters	for	Business	Teams	Let’s	get	real:	in	2025,	if	your	business	isn’t	leveraging	web	scraping,	you’re	probably	leaving	money	on	the	table.	Here’s	why:	Automate	Manual	Data	Collection:	No	more	copy-pasting	rows	from	competitor	sites	or	online	directories.	Real-Time	Insights:	Get	up-to-date
pricing,	inventory,	or	market	trends	as	they	happen.	Scale:	Scrape	thousands	of	pages	in	the	time	it	takes	to	microwave	your	lunch.	ROI:	Companies	using	data-driven	strategies	report	.	Here’s	a	quick	table	of	high-impact	use	cases:	The	bottom	line:	web	scraping	is	the	secret	sauce	behind	smarter,	faster,	and	more	competitive	business	decisions.
Overview:	All	Major	Python	Web	Scraping	Libraries	(With	Code	Snippets)	I	promised	you	a	complete	tour,	so	buckle	up.	Python’s	ecosystem	for	web	scraping	is	massive—there’s	a	library	for	every	flavor	of	scraping,	from	simple	page	downloads	to	full-blown	browser	automation.	Here’s	the	lay	of	the	land,	with	code	snippets	for	each:	urllib	and	urllib3:
The	Basics	of	HTTP	Requests	These	are	Python’s	built-in	tools	for	making	HTTP	requests.	They’re	low-level,	a	bit	clunky,	but	reliable	for	basic	tasks.	import	urllib3,	urllib3.util	http	=	urllib3.PoolManager()	headers	=	urllib3.util.make_headers(user_agent="MyBot/1.0")	response	=	http.request('GET',	"<	",	headers=headers)	print(response.status)	#
HTTP	status	code	print(response.data[:100])	#	first	100	bytes	of	content	Use	these	if	you	want	zero	dependencies	or	need	fine-grained	control.	But	for	most	jobs,	you’ll	want	something	friendlier—like	requests.	requests:	The	Most	Popular	Python	Web	Scraping	Library	If	Python	scraping	had	a	mascot,	it	would	be	the	requests	library.	It’s	simple,
powerful,	and	handles	all	the	HTTP	heavy	lifting.	import	requests	r	=	requests.get("<	",	headers={"User-Agent":	"MyBot/1.0"})	print(r.status_code)	#	200	print(r.json())	#	parsed	JSON	content	(if	response	was	JSON)	Why	is	it	so	popular?	It	manages	cookies,	sessions,	redirects,	and	more—so	you	can	focus	on	getting	data,	not	wrestling	with	HTTP
minutiae.	Just	remember:	requests	only	fetches	the	HTML.	To	extract	data,	you’ll	need	a	parser	like	BeautifulSoup.	BeautifulSoup:	Easy	HTML	Parsing	and	Data	Extraction	BeautifulSoup	is	the	go-to	for	parsing	HTML	in	Python.	It’s	forgiving,	beginner-friendly,	and	works	hand-in-hand	with	requests.	from	bs4	import	BeautifulSoup	html	=	"

Widget

$19.99"	soup	=	BeautifulSoup(html,	'html.parser')	title	=	soup.find('h2').text	#	"Widget"	price	=	soup.find('span',	class_='price').text	#	"$19.99"	It’s	perfect	for	small-to-medium	projects	or	when	you’re	just	getting	started.	For	huge	datasets	or	complex	queries,	you	might	want	to	level	up	to	lxml.	lxml	and	XPath:	Fast,	Powerful	HTML/XML	Parsing	If
you	need	speed	or	want	to	use	XPath	(a	query	language	for	XML/HTML),	lxml	is	your	friend.	from	lxml	import	html	doc	=	html.fromstring(page_content)	prices	=	doc.xpath("//span[@class='price']/text()")	XPath	lets	you	grab	data	with	surgical	precision.	lxml	is	fast	and	efficient,	but	the	learning	curve	is	a	bit	steeper	than	BeautifulSoup.	Scrapy:	The
Framework	for	Large-Scale	Web	Crawling	Scrapy	is	the	heavyweight	champion	for	big	scraping	jobs.	It’s	a	full	framework—think	of	it	as	Django	for	web	scraping.	import	scrapy	class	QuotesSpider(scrapy.Spider):	name	=	"quotes"	start_urls	=	["<	"]	def	parse(self,	response):	for	quote	in	response.css("div.quote"):	yield	{	"text":
quote.css("span.text::text").get(),	"author":	quote.css("small.author::text").get(),	}	Scrapy	handles	asynchronous	requests,	follows	links,	manages	pipelines,	and	exports	data	in	multiple	formats.	It’s	a	bit	much	for	tiny	scripts,	but	unbeatable	for	crawling	thousands	of	pages.	Selenium,	Playwright,	and	Pyppeteer:	Scraping	Dynamic	Websites	When	you
hit	a	site	that	loads	data	with	JavaScript,	you	need	browser	automation.	Selenium	and	Playwright	are	the	big	names	here.	Selenium	Example:	from	selenium	import	webdriver	from	selenium.webdriver.common.by	import	By	driver	=	webdriver.Chrome()	driver.get("<	")	driver.find_element(By.NAME,	"username").send_keys("user123")
driver.find_element(By.NAME,	"password").send_keys("secret")	driver.find_element(By.ID,	"submit-btn").click()	titles	=	[el.text	for	el	in	driver.find_elements(By.CLASS_NAME,	"product-title")]	Playwright	Example:	from	playwright.sync_api	import	sync_playwright	with	sync_playwright()	as	p:	browser	=	p.chromium.launch(headless=True)	page	=
browser.new_page()	page.goto("<	>")	page.wait_for_selector(".item")	data	=	page.eval_on_selector(".item",	"el	=>	el.textContent")	These	tools	can	handle	any	site	a	human	can,	but	they’re	slower	and	heavier	than	pure	HTTP	scraping.	Use	them	when	you	have	to,	not	just	because	you	can.	MechanicalSoup:	Automates	form	submissions	and
navigation,	built	on	top	of	Requests	and	BeautifulSoup.	import	mechanicalsoup	browser	=	mechanicalsoup.StatefulBrowser()	browser.open("<	")	browser.select_form('form#loginForm')	browser["username"]	=	"user123"	browser["password"]	=	"secret"	browser.submit_selected()	page	=	browser.get_current_page()	print(page.title.text)	RoboBrowser:
Similar	to	MechanicalSoup,	but	less	maintained.	PyQuery:	jQuery-style	HTML	parsing.	from	pyquery	import	PyQuery	as	pq	doc	=	pq("HelloWorld")	print(doc("p.title").text())	#	"Hello"	print(doc("p").eq(1).text())	#	"World"	Requests-HTML:	Combines	HTTP	requests,	parsing,	and	even	JavaScript	rendering.	from	requests_html	import	HTMLSession
session	=	HTMLSession()	r	=	session.get("<	>")	r.html.render(timeout=20)	links	=	[a.text	for	a	in	r.html.find("a.story-link")]	Use	these	when	you	want	a	shortcut	for	forms,	CSS	selectors,	or	light	JS	rendering.	Asyncio	and	Aiohttp:	Speeding	Up	Python	Web	Scraping	For	scraping	hundreds	or	thousands	of	pages,	synchronous	requests	are	just	too	slow.
Enter	aiohttp	and	asyncio	for	concurrent	scraping.	import	aiohttp,	asyncio	async	def	fetch_page(session,	url):	async	with	session.get(url)	as	resp:	return	await	resp.text()	async	def	fetch_all(urls):	async	with	aiohttp.ClientSession()	as	session:	tasks	=	[fetch_page(session,	url)	for	url	in	urls]	return	await	asyncio.gather(*tasks)	urls	=	["<	",	"<	"]
html_pages	=	asyncio.run(fetch_all(urls))	This	approach	can	fetch	dozens	of	pages	at	once,	dramatically	speeding	up	your	scrape.	Specialized	Libraries:	PRAW	(Reddit),	PyPDF2,	and	More	PRAW:	For	scraping	Reddit	via	its	API.	import	praw	reddit	=	praw.Reddit(client_id='XXX',	client_secret='YYY',	user_agent='myapp')	for	submission	in
reddit.subreddit("learnpython").hot(limit=5):	print(submission.title,	submission.score)	PyPDF2:	For	extracting	text	from	PDFs.	from	PyPDF2	import	PdfReader	reader	=	PdfReader("sample.pdf")	num_pages	=	len(reader.pages)	text	=	reader.pages[0].extract_text()	Others:	There	are	libraries	for	Instagram,	Twitter,	OCR	(Tesseract),	and	more.	If	you
have	a	weird	data	source,	chances	are	someone	has	built	a	Python	library	for	it.	Comparison	Table:	Python	Scraping	Libraries	Scrape	data	from	any	website	using	AI	Let’s	walk	through	a	real-world	example:	scraping	product	listings	from	a	(hypothetical)	ecommerce	site,	handling	pagination,	and	exporting	to	CSV.	import	requests	from	bs4	import
BeautifulSoup	import	csv	base_url	=	"<	"	page_num	=	1	all_products	=	[]	while	True:	url	=	base_url	if	page_num	==	1	else	f"{base_url}/page/{page_num}"	print(f"Scraping	page:	{url}")	response	=	requests.get(url,	timeout=10)	if	response.status_code	!=	200:	print(f"Page	{page_num}	returned	status	{response.status_code},	stopping.")	break	soup
=	BeautifulSoup(response.text,	'html.parser')	products	=	soup.find_all('div',	class_='product-item')	if	not	products:	print("No	more	products	found,	stopping.")	break	for	prod	in	products:	name_tag	=	prod.find('h2',	class_='product-title')	price_tag	=	prod.find('span',	class_='price')	name	=	name_tag.get_text(strip=True)	if	name_tag	else	"N/A"	price	=
price_tag.get_text(strip=True)	if	price_tag	else	"N/A"	all_products.append((name,	price))	page_num	+=	1	print(f"Collected	{len(all_products)}	products.	Saving	to	CSV...")	with	open('products_data.csv',	'w',	newline='',	encoding='utf-8')	as	f:	writer	=	csv.writer(f)	writer.writerow(["Product	Name",	"Price"])	writer.writerows(all_products)	print("Data
saved	to	products_data.csv")	What’s	happening	here?	Loop	through	pages,	fetch	HTML,	parse	products,	collect	name	and	price,	and	stop	when	no	more	products	are	found.	Export	the	results	to	CSV	for	easy	analysis.	Want	to	export	to	Excel	instead?	Use	pandas:	import	pandas	as	pd	df	=	pd.DataFrame(all_products,	columns=["Product	Name",
"Price"])	df.to_excel("products_data.xlsx",	index=False)	Handling	Forms,	Logins,	and	Sessions	in	Python	Web	Scraping	Many	sites	require	login	or	form	submission.	Here’s	how	you	can	handle	that:	Using	requests	with	a	session:	session	=	requests.Session()	login_data	=	{"username":	"user123",	"password":	"secret"}	session.post("<	",
data=login_data)	resp	=	session.get("<	")	Using	MechanicalSoup:	import	mechanicalsoup	browser	=	mechanicalsoup.StatefulBrowser()	browser.open("<	")	browser.select_form('form#login')	browser["user"]	=	"user123"	browser["pass"]	=	"secret"	browser.submit_selected()	Sessions	help	you	persist	cookies	and	stay	logged	in	as	you	scrape	multiple
pages.	Scraping	Dynamic	Content	and	JavaScript-Rendered	Pages	If	the	data	isn’t	in	the	HTML	(view	source	shows	empty	divs),	you’ll	need	browser	automation.	Selenium	Example:	from	selenium.webdriver.support.ui	import	WebDriverWait	from	selenium.webdriver.support	import	expected_conditions	as	EC	driver.get("<	")	WebDriverWait(driver,
10).until(EC.presence_of_element_located((By.ID,	'stats-table')))	html	=	driver.page_source	Or,	if	you	can	find	the	API	endpoint	that	the	JavaScript	calls,	just	use	requests	to	fetch	the	JSON	directly—it’s	way	faster.	Exporting	Scraped	Data:	CSV,	Excel,	Databases,	and	More	CSV:	Use	Python’s	csv	module	(see	above).	Excel:	Use	pandas	or	openpyxl.
Google	Sheets:	Use	the	gspread	library.	import	gspread	gc	=	gspread.service_account(filename="credentials.json")	sh	=	gc.open("My	Data	Sheet")	worksheet	=	sh.sheet1	worksheet.clear()	worksheet.append_row(["Name",	"Price"])	for	name,	price	in	all_products:	worksheet.append_row([name,	price])	Databases:	Use	sqlite3,	pymysql,	psycopg2,	or
SQLAlchemy	for	SQL	databases.	For	NoSQL,	use	pymongo	for	MongoDB.	Comparing	Python	Web	Scraping	to	Modern	No-Code	Solutions:	Why	Thunderbit	is	the	Top	Choice	in	2025	Now,	let’s	talk	about	the	elephant	in	the	room:	maintenance.	Coding	your	own	scrapers	is	great—until	you	need	to	scrape	100	different	sites,	each	with	its	own	quirks,
and	they	all	break	the	night	before	your	big	report	is	due.	Been	there,	done	that,	got	the	gray	hairs.	That’s	why	I’m	such	a	fan	of	.	Here’s	why	it’s	my	top	pick	for	business	users	in	2025:	No	Coding	Required:	Thunderbit	gives	you	a	visual	interface.	Click	“AI	Suggest	Fields,”	adjust	the	columns,	hit	“Scrape,”	and	you’re	done.	No	Python,	no	debugging,
no	Stack	Overflow	marathons.	Scales	to	Thousands	of	Pages:	Need	to	scrape	10,000	product	listings?	Thunderbit’s	cloud	engine	can	handle	it,	and	you	don’t	have	to	babysit	a	script.	Zero	Maintenance:	If	you’re	tracking	100	competitor	sites	for	ecommerce	analysis,	maintaining	100	Python	scripts	is	a	nightmare.	With	Thunderbit,	you	just	select	or
tweak	a	template,	and	their	AI	adapts	to	layout	changes	automatically.	Subpage	and	Pagination	Support:	Thunderbit	can	follow	links	to	subpages,	handle	pagination,	and	even	enrich	your	data	by	visiting	each	product’s	detail	page.	Instant	Templates:	For	popular	sites	(Amazon,	Zillow,	LinkedIn,	etc.),	Thunderbit	has	pre-built	templates.	One	click,	and
you	have	your	data.	Free	Data	Export:	Export	to	Excel,	Google	Sheets,	Airtable,	or	Notion—no	extra	charge.	Let’s	put	it	this	way:	if	you’re	a	business	user	who	just	wants	the	data,	Thunderbit	is	like	having	a	personal	data	butler.	If	you’re	a	developer	who	loves	tinkering,	Python	is	still	your	playground—but	even	then,	sometimes	you	just	want	to	get
the	job	done.	Try	Thunderbit	AI	Web	Scraper	for	Free	Best	Practices	for	Ethical	and	Legal	Python	Web	Scraping	Web	scraping	is	powerful,	but	it	comes	with	responsibility.	Here’s	how	to	stay	on	the	right	side	of	the	law	(and	karma):	Check	robots.txt:	Respect	the	site’s	wishes	on	what	can	be	scraped.	Read	the	Terms	of	Service:	Some	sites	explicitly
forbid	scraping.	Violating	ToS	can	get	you	blocked	or	even	sued.	Rate	Limit:	Don’t	hammer	servers—add	delays	between	requests.	Avoid	Personal	Data:	Be	careful	with	scraping	emails,	phone	numbers,	or	anything	that	could	be	considered	personal	under	GDPR	or	CCPA.	Don’t	Circumvent	Anti-Bot	Measures:	If	a	site	uses	CAPTCHAs	or	aggressive
blocking,	think	twice.	Attribute	Sources:	If	you	publish	analysis,	give	credit	to	where	the	data	came	from.	For	more	on	the	legal	landscape,	check	out	this	and	.	Resources	to	Learn	More	Python	Web	Scraping	(Courses,	Docs,	Communities)	Want	to	go	deeper?	Here’s	my	curated	list	of	the	best	resources:	Official	Docs:	Books:	“Web	Scraping	with
Python”	by	Ryan	Mitchell	“Automate	the	Boring	Stuff	with	Python”	by	Al	Sweigart	Online	Guides:	Video	Tutorials:	Corey	Schafer’s	YouTube	channel	Communities:	And	of	course,	if	you	want	to	see	how	no-code	scraping	works,	check	out	the	or	the	.	Conclusion	&	Key	Takeaways:	Choosing	the	Right	Web	Scraping	Solution	in	2025	Python	web	scraping
is	incredibly	powerful	and	flexible.	If	you	love	code,	want	full	control,	and	don’t	mind	a	little	maintenance,	it’s	a	great	choice.	There’s	a	Python	library	for	every	scraping	need—static	pages,	dynamic	content,	forms,	APIs,	PDFs,	you	name	it.	But	for	most	business	users,	maintaining	dozens	of	scripts	is	a	pain.	If	your	goal	is	to	get	data	fast,	at	scale,	and
without	a	computer	science	degree,	is	the	way	to	go.	Thunderbit’s	AI-powered,	no-code	interface	lets	you	scrape	any	website	in	a	couple	of	clicks,	handle	subpages	and	pagination,	and	export	data	wherever	you	need	it—no	Python	required.	Ethics	and	legality	matter:	Always	check	site	policies,	respect	privacy,	and	scrape	responsibly.	So,	whether
you’re	a	Python	pro	or	just	want	the	data	without	the	drama,	the	tools	are	better	than	ever	in	2025.	My	advice?	Try	both	approaches,	see	what	fits	your	workflow,	and	don’t	be	afraid	to	let	the	robots	do	the	boring	stuff—just	make	sure	they’re	polite	about	it.	And	if	you’re	tired	of	chasing	broken	scripts,	give	a	spin.	Your	future	self	(and	your	coffee
supply)	will	thank	you.	Want	more?	Check	out	or	for	hands-on	guides	and	the	latest	scraping	strategies.	Want	to	give	your	brand	videos	a	cinematic	edge?	Join	our	visual	experts	and	special	guests	for	an	info-packed	hour	of	insights	to	elevate	your	next	video	project.	Tune	in	on	June	24	at	11am	ET.Register	NowHow	can	financial	brands	set	themselves
apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionWant	to	give	your	brand	videos	a	cinematic	edge?	Join	our	visual	experts	and	special	guests	for	an	info-packed	hour	of	insights	to	elevate	your	next	video	project.
Tune	in	on	June	24	at	11am	ET.Register	NowHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover	The	CollectionWant	to	give	your	brand	videos	a	cinematic	edge?	Join	our	visual	experts
and	special	guests	for	an	info-packed	hour	of	insights	to	elevate	your	next	video	project.	Tune	in	on	June	24	at	11am	ET.Register	NowHow	can	financial	brands	set	themselves	apart	through	visual	storytelling?	Our	experts	explain	how.Learn	MoreThe	Motorsport	Images	Collections	captures	events	from	1895	to	today’s	most	recent	coverage.Discover
The	Collection	Watch	Now	This	tutorial	has	a	related	video	course	created	by	the	Real	Python	team.	Watch	it	together	with	the	written	tutorial	to	deepen	your	understanding:	Web	Scraping	With	Beautiful	Soup	and	Python	Beautiful	Soup	is	a	Python	library	designed	for	parsing	HTML	and	XML	documents.	It	creates	parse	trees	that	make	it
straightforward	to	extract	data	from	HTML	documents	you’ve	scraped	from	the	internet.	Beautiful	Soup	is	a	useful	tool	in	your	web	scraping	toolkit,	allowing	you	to	conveniently	extract	specific	information	from	HTML,	even	from	complex	static	websites.	In	this	tutorial,	you’ll	learn	how	to	build	a	web	scraper	using	Beautiful	Soup	along	with	the
Requests	library	to	scrape	and	parse	job	listings	from	a	static	website.	Static	websites	provide	consistent	HTML	content,	while	dynamic	sites	may	require	handling	JavaScript.	For	dynamic	websites,	you’ll	need	to	incorporate	additional	tools	that	can	execute	JavaScript,	such	as	Scrapy	or	Selenium.	By	the	end	of	this	tutorial,	you’ll	understand	that:	You
can	use	Beautiful	Soup	for	parsing	HTML	and	XML	documents	to	extract	data	from	web	pages.	Beautiful	Soup	is	named	after	a	song	in	Alice’s	Adventures	in	Wonderland	by	Lewis	Carroll,	based	on	its	ability	to	tackle	poorly	structured	HTML	known	as	tag	soup.	You’ll	often	use	Beautiful	Soup	in	your	web	scraping	pipeline	when	scraping	static	content,
while	you’ll	need	additional	tools	such	as	Selenium	to	handle	dynamic,	JavaScript-rendered	pages.	Using	Beautiful	Soup	is	legal	because	you	only	use	it	for	parsing	documents.	Web	scraping	in	general	is	also	legal	if	you	respect	a	website’s	terms	of	service	and	copyright	laws.	Working	through	this	project	will	give	you	the	knowledge	and	tools	that	you
need	to	scrape	any	static	website	out	there	on	the	World	Wide	Web.	If	you	like	learning	with	hands-on	examples	and	have	a	basic	understanding	of	Python	and	HTML,	then	this	tutorial	is	for	you!	You	can	download	the	project	source	code	by	clicking	on	the	link	below:	Take	the	Quiz:	Test	your	knowledge	with	our	interactive	“Beautiful	Soup:	Build	a
Web	Scraper	With	Python”	quiz.	You’ll	receive	a	score	upon	completion	to	help	you	track	your	learning	progress:	Interactive	Quiz	Beautiful	Soup:	Build	a	Web	Scraper	With	Python	In	this	quiz,	you'll	test	your	understanding	of	web	scraping	using	Python.	By	working	through	this	quiz,	you'll	revisit	how	to	inspect	the	HTML	structure	of	a	target	site,
decipher	data	encoded	in	URLs,	and	use	Requests	and	Beautiful	Soup	for	scraping	and	parsing	data.	Web	scraping	is	the	process	of	gathering	information	from	the	internet.	Even	copying	and	pasting	the	lyrics	of	your	favorite	song	can	be	considered	a	form	of	web	scraping!	However,	the	term	“web	scraping”	usually	refers	to	a	process	that	involves
automation.	While	some	websites	don’t	like	it	when	automatic	scrapers	gather	their	data,	which	can	lead	to	legal	issues,	others	don’t	mind	it.	If	you’re	scraping	a	page	respectfully	for	educational	purposes,	then	you’re	unlikely	to	have	any	problems.	Still,	it’s	a	good	idea	to	do	some	research	on	your	own	to	make	sure	you’re	not	violating	any	Terms	of
Service	before	you	start	a	large-scale	web	scraping	project.	Say	that	you	like	to	surf—both	in	the	ocean	and	online—and	you’re	looking	for	employment.	It’s	clear	that	you’re	not	interested	in	just	any	job.	With	a	surfer’s	mindset,	you’re	waiting	for	the	perfect	opportunity	to	roll	your	way!	You	know	about	a	job	site	that	offers	precisely	the	kinds	of	jobs
you	want.	Unfortunately,	a	new	position	only	pops	up	once	in	a	blue	moon,	and	the	site	doesn’t	provide	an	email	notification	service.	You	consider	checking	up	on	it	every	day,	but	that	doesn’t	sound	like	the	most	fun	and	productive	way	to	spend	your	time.	You’d	rather	be	outside	surfing	real-life	waves!	Thankfully,	Python	offers	a	way	to	apply	your
surfer’s	mindset.	Instead	of	having	to	check	the	job	site	every	day,	you	can	use	Python	to	help	automate	the	repetitive	parts	of	your	job	search.	With	automated	web	scraping,	you	can	write	the	code	once,	and	it’ll	get	the	information	that	you	need	many	times	and	from	many	pages.	Note:	In	contrast,	when	you	try	to	get	information	manually,	you	might
spend	a	lot	of	time	clicking,	scrolling,	and	searching,	especially	if	you	need	large	amounts	of	data	from	websites	that	are	regularly	updated	with	new	content.	Manual	web	scraping	can	take	a	lot	of	time	and	be	highly	repetitive	and	error-prone.	There’s	so	much	information	on	the	internet,	with	new	information	constantly	being	added.	You’ll	probably
be	interested	in	some	of	that	data,	and	much	of	it	is	out	there	for	the	taking.	Whether	you’re	actually	on	the	job	hunt	or	just	want	to	automatically	download	all	the	lyrics	of	your	favorite	artist,	automated	web	scraping	can	help	you	accomplish	your	goals.	The	internet	has	grown	organically	out	of	many	sources.	It	combines	many	different	technologies,
styles,	and	personalities,	and	it	continues	to	grow	every	day.	In	other	words,	the	internet	is	a	hot	mess!	Because	of	this,	you’ll	run	into	some	challenges	when	scraping	the	web:	Variety:	Every	website	is	different.	While	you’ll	encounter	general	structures	that	repeat	themselves,	each	website	is	unique	and	will	need	personal	treatment	if	you	want	to
extract	the	relevant	information.	Durability:	Websites	constantly	change.	Say	you’ve	built	a	shiny	new	web	scraper	that	automatically	cherry-picks	what	you	want	from	your	resource	of	interest.	The	first	time	you	run	your	script,	it	works	flawlessly.	But	when	you	run	the	same	script	a	while	later,	you	run	into	a	discouraging	and	lengthy	stack	of
tracebacks!	Unstable	scripts	are	a	realistic	scenario	because	many	websites	are	in	active	development.	If	a	site’s	structure	changes,	then	your	scraper	might	not	be	able	to	navigate	the	sitemap	correctly	or	find	the	relevant	information.	The	good	news	is	that	changes	to	websites	are	often	small	and	incremental,	so	you’ll	likely	be	able	to	update	your
scraper	with	minimal	adjustments.	Still,	keep	in	mind	that	the	internet	is	dynamic	and	keeps	on	changing.	Therefore,	the	scrapers	you	build	will	probably	require	maintenance.	You	can	set	up	continuous	integration	to	run	scraping	tests	periodically	to	ensure	that	your	main	script	doesn’t	break	without	your	knowledge.	Some	website	providers	offer
application	programming	interfaces	(APIs)	that	allow	you	to	access	their	data	in	a	predefined	manner.	With	APIs,	you	can	avoid	parsing	HTML.	Instead,	you	can	access	the	data	directly	using	formats	like	JSON	and	XML.	HTML	is	primarily	a	way	to	visually	present	content	to	users.	When	you	use	an	API,	the	data	collection	process	is	generally	more
stable	than	it	is	through	web	scraping.	That’s	because	developers	create	APIs	to	be	consumed	by	programs	rather	than	by	human	eyes.	The	front-end	presentation	of	a	site	might	change	often,	but	a	change	in	the	website’s	design	doesn’t	affect	its	API	structure.	The	structure	of	an	API	is	usually	more	permanent,	which	means	it’s	a	more	reliable
source	of	the	site’s	data.	However,	APIs	can	change	as	well.	The	challenges	of	both	variety	and	durability	apply	to	APIs	just	as	they	do	to	websites.	Additionally,	it’s	much	harder	to	inspect	the	structure	of	an	API	by	yourself	if	the	provided	documentation	lacks	quality.	The	approach	and	tools	you	need	to	gather	information	using	APIs	is	outside	the
scope	of	this	tutorial.	To	learn	more	about	it,	check	out	API	Integration	in	Python.	In	this	tutorial,	you’ll	build	a	web	scraper	that	fetches	Python	software	developer	job	listings	from	a	fake	Python	job	site.	It’s	an	example	site	with	fake	job	postings	that	you	can	freely	scrape	to	train	your	skills.	Your	web	scraper	will	parse	the	HTML	on	the	site	to	pick
out	the	relevant	information	and	filter	that	content	for	specific	words.	You	can	scrape	any	site	on	the	internet	that	you	can	look	at,	but	the	difficulty	of	doing	so	depends	on	the	site.	This	tutorial	offers	you	an	introduction	to	web	scraping	to	help	you	understand	the	overall	process.	Then,	you	can	apply	this	same	process	for	every	website	that	you	want
to	scrape.	Note:	Real-life	job	boards	may	quickly	change	in	structure	and	availability.	To	offer	you	a	smooth	learning	experience,	this	tutorial	focuses	on	a	self-hosted	static	site	that’s	guaranteed	to	stay	the	same.	This	gives	you	a	reliable	playground	to	practice	the	skills	that	you	need	for	web	scraping.	Throughout	the	tutorial,	you’ll	also	encounter	a
few	exercise	blocks.	You	can	click	to	expand	them	and	challenge	yourself	by	completing	the	tasks	described	within.	Before	you	write	any	Python	code,	you	need	to	get	to	know	the	website	that	you	want	to	scrape.	Getting	to	know	the	website	should	be	your	first	step	for	any	web	scraping	project	that	you	want	to	tackle.	You’ll	need	to	understand	the
site	structure	to	extract	the	information	relevant	for	you.	Start	by	opening	the	site	that	you	want	to	scrape	with	your	favorite	browser.	Click	through	the	site	and	interact	with	it	just	like	any	typical	job	searcher	would.	For	example,	you	can	scroll	through	the	main	page	of	the	website:	On	that	page,	you	can	see	many	job	postings	in	a	card	format.	Each
of	them	has	two	buttons.	If	you	click	on	Learn,	then	you’ll	visit	Real	Python’s	home	page.	If	you	click	on	Apply,	then	you’ll	see	a	new	page	that	contains	more	detailed	descriptions	of	the	job	on	that	card.	You	might	also	notice	that	the	URL	in	your	browser’s	address	bar	changes	when	you	navigate	to	one	of	those	pages.	You	can	encode	a	lot	of
information	in	a	URL.	Becoming	familiar	with	how	URLs	work	and	what	they’re	made	of	will	help	you	on	your	web	scraping	journey.	For	example,	you	might	find	yourself	on	a	details	page	that	has	the	following	URL:	You	can	deconstruct	the	above	URL	into	two	main	parts:	The	base	URL	points	to	the	main	location	of	the	web	resource.	In	the	example
above,	the	base	URL	is	.	The	path	to	a	specific	resource	location	points	to	a	unique	job	description.	In	the	example	above,	the	path	is	fake-jobs/jobs/senior-python-developer-0.html.	Any	job	posted	on	this	website	will	share	the	same	base	URL.	However,	the	location	of	the	unique	resources	will	be	different	depending	on	the	job	posting	that	you	view.
Usually,	similar	resources	on	a	website	will	share	a	similar	location,	such	as	the	folder	structure	fake-jobs/jobs/.	However,	the	final	part	of	the	path	points	to	a	specific	resource	and	will	be	different	for	each	job	posting.	In	this	case,	it’s	a	static	HTML	file	named	senior-python-developer-0.html.	URLs	can	hold	more	information	than	just	the	location	of	a
file.	Some	websites	use	query	parameters	to	encode	values	that	you	submit	when	performing	a	search.	You	can	think	of	them	as	query	strings	that	you	send	to	the	database	to	retrieve	specific	records.	You’ll	find	query	parameters	at	the	end	of	a	URL.	For	example,	if	you	go	to	Indeed	and	search	for	“software	developer”	in	“Australia”	through	the	site’s
search	bar,	you’ll	see	that	the	URL	changes	to	include	these	values	as	query	parameters:	The	query	parameters	in	this	URL	are	?q=software+developer&l=Australia.	Query	parameters	consist	of	three	parts:	Start:	You	can	identify	the	beginning	of	the	query	parameters	by	looking	for	the	question	mark	(?).	Information:	You’ll	find	the	pieces	of
information	that	constitute	one	query	parameter	encoded	in	key-value	pairs,	where	related	keys	and	values	are	joined	together	by	an	equal	sign	(key=value).	Separator:	You’ll	see	an	ampersand	symbol	(&)	separating	multiple	query	parameters	if	there	are	more	than	one.	Equipped	with	this	information,	you	can	separate	the	URL’s	query	parameters
into	two	key-value	pairs:	q=software+developer	selects	the	type	of	job.	l=Australia	selects	the	location	of	the	job.	Try	to	change	the	search	parameters	and	observe	how	that	affects	your	URL.	Go	ahead	and	enter	new	values	in	the	search	bar	of	the	Indeed	job	board:	Change	these	values	to	observe	the	changes	in	the	URL.	Next,	try	to	change	the
values	directly	in	your	URL.	See	what	happens	when	you	paste	the	following	URL	into	your	browser’s	address	bar:	If	you	change	and	submit	the	values	in	the	website’s	search	box,	then	it’ll	be	directly	reflected	in	the	URL’s	query	parameters	and	vice	versa.	If	you	change	either	of	them,	then	you’ll	see	different	results	on	the	website.	As	you	can	see,
exploring	the	URLs	of	a	site	can	give	you	insight	into	how	to	retrieve	data	from	the	website’s	server.	Head	back	to	Fake	Python	jobs	and	continue	to	explore	it.	This	site	is	a	static	website	containing	hardcoded	information.	It	doesn’t	operate	on	top	of	a	database,	which	is	why	you	won’t	have	to	work	with	query	parameters	in	this	scraping	tutorial.
Next,	you’ll	want	to	learn	more	about	how	the	data	is	structured	for	display.	You’ll	need	to	understand	the	page	structure	to	pick	what	you	want	from	the	HTML	response	that	you’ll	collect	in	one	of	the	upcoming	steps.	Developer	tools	can	help	you	understand	the	structure	of	a	website.	All	modern	browsers	come	with	developer	tools	installed.	In	this
section,	you’ll	learn	how	to	work	with	the	developer	tools	in	Chrome.	The	process	will	be	very	similar	on	other	modern	browsers.	In	Chrome	on	macOS,	you	can	open	up	the	developer	tools	through	the	menu	by	selecting	View	→	Developer	→	Developer	Tools.	On	Windows	and	Linux,	you	can	access	them	by	clicking	the	top-right	menu	button	(⋮)	and
selecting	More	Tools	→	Developer	Tools.	You	can	also	access	your	developer	tools	by	right-clicking	on	the	page	and	selecting	the	Inspect	option	or	using	a	keyboard	shortcut:	Mac:	Cmd+Alt+I	Windows/Linux:	Ctrl+Shift+I	Developer	tools	allow	you	to	interactively	explore	the	site’s	document	object	model	(DOM)	to	better	understand	your	source.	To
dig	into	your	page’s	DOM,	select	the	Elements	tab	in	developer	tools.	You’ll	see	a	structure	with	clickable	HTML	elements.	You	can	expand,	collapse,	and	even	edit	elements	right	in	your	browser:	The	HTML	on	the	right	represents	the	structure	of	the	page	you	can	see	on	the	left.	You	can	think	of	the	text	displayed	in	your	browser	as	the	HTML
structure	of	the	page.	If	you’re	interested,	then	you	can	read	more	about	the	difference	between	the	DOM	and	HTML.	When	you	right-click	elements	on	the	page,	you	can	select	Inspect	to	zoom	to	their	location	in	the	DOM.	You	can	also	hover	over	the	HTML	text	on	your	right	and	see	the	corresponding	elements	light	up	on	the	page.	Click	to	expand
the	exercise	block	for	a	specific	task	to	practice	using	your	developer	tools:	Find	a	single	job	posting.	What	HTML	element	is	it	wrapped	in,	and	what	other	HTML	elements	does	it	contain?	Play	around	and	explore!	The	more	you	get	to	know	the	page	you’re	working	with,	the	easier	it’ll	be	to	scrape.	But	don’t	get	too	overwhelmed	with	all	that	HTML
text.	You’ll	use	the	power	of	programming	to	step	through	this	maze	and	cherry-pick	the	information	that’s	relevant	to	you.	Now	that	you	have	an	idea	of	what	you’re	working	with,	it’s	time	to	start	using	Python.	First,	you’ll	want	to	get	the	site’s	HTML	code	into	your	Python	script	so	that	you	can	interact	with	it.	For	this	task,	you’ll	use	Python’s
Requests	library.	Before	you	install	any	external	package,	you’ll	need	to	create	a	virtual	environment	for	your	project.	Activate	your	new	virtual	environment,	then	type	the	following	command	in	your	terminal	to	install	the	Requests	library:	Then	open	up	a	new	file	in	your	favorite	text	editor	and	call	it	scraper.py.	You	only	need	a	few	lines	of	code	to
retrieve	the	HTML:	Copied!	When	you	run	this	code,	it	issues	an	HTTP	GET	request	to	the	given	URL.	It	retrieves	the	HTML	data	that	the	server	sends	back	and	stores	that	data	in	a	Python	object	you	called	page.	If	you	print	the	.text	attribute	of	page,	then	you’ll	notice	that	it	looks	just	like	the	HTML	you	inspected	earlier	with	your	browser’s
developer	tools.	You’ve	successfully	fetched	the	static	site	content	from	the	internet!	You	now	have	access	to	the	site’s	HTML	from	within	your	Python	script.	The	website	that	you’re	scraping	in	this	tutorial	serves	static	HTML	content.	In	this	scenario,	the	server	that	hosts	the	site	sends	back	HTML	documents	that	already	contain	all	the	data	a	user
gets	to	see.	When	you	inspected	the	page	with	developer	tools	earlier	on,	you	discovered	that	a	single	job	posting	consists	of	the	following	long	and	messy-looking	HTML:	It	can	be	challenging	to	wrap	your	head	around	a	long	block	of	HTML	code.	To	make	it	easier	to	read,	you	can	use	an	HTML	formatter	to	clean	up	the	HTML	automatically.	Good
readability	can	help	you	better	understand	the	structure	of	any	block	of	code.	While	improved	HTML	formatting	may	or	may	not	help,	it’s	always	worth	a	try.	Note:	Keep	in	mind	that	every	website	looks	different.	That’s	why	it’s	necessary	to	inspect	and	understand	the	structure	of	the	site	you’re	working	with	before	moving	forward.	The	HTML	you’ll
encounter	will	sometimes	be	confusing.	Luckily,	the	HTML	of	this	job	board	has	descriptive	class	names	on	the	elements	that	you’re	interested	in:	class="title	is-5"	contains	the	title	of	the	job	posting.	class="subtitle	is-6	company"	contains	the	name	of	the	company	that	offers	the	position.	class="location"	contains	the	location	where	you’d	be	working.
If	you	ever	get	lost	in	a	large	pile	of	HTML,	remember	that	you	can	always	go	back	to	your	browser	and	use	the	developer	tools	to	further	explore	the	HTML	structure	interactively.	By	now,	you’ve	successfully	harnessed	the	power	and	user-friendly	design	of	Python’s	Requests	library.	With	only	a	few	lines	of	code,	you	managed	to	scrape	static	HTML
content	from	the	web	and	make	it	available	for	further	processing.	While	this	was	a	breeze,	you	may	encounter	more	challenging	situations	when	working	on	your	own	web	scraping	projects.	Before	you	learn	how	to	select	the	relevant	information	from	the	HTML	that	you	just	scraped,	you’ll	take	a	quick	look	at	two	more	challenging	situations.	Some
pages	contain	information	that’s	hidden	behind	a	login.	This	means	you’ll	need	an	account	to	be	able	to	scrape	anything	from	the	page.	Just	like	you	need	to	log	in	on	your	browser	when	you	want	to	access	content	on	such	a	page,	you’ll	also	need	to	log	in	from	your	Python	script.	The	Requests	library	comes	with	the	built-in	capacity	to	handle
authentication.	With	these	techniques,	you	can	log	in	to	websites	when	making	the	HTTP	request	from	your	Python	script	and	then	scrape	information	that’s	hidden	behind	a	login.	You	won’t	need	to	log	in	to	access	the	job	board	information,	so	this	tutorial	won’t	cover	authentication.	Many	modern	websites	don’t	send	back	static	HTML	content	like
this	practice	site	does.	If	you’re	dealing	with	a	dynamic	website,	then	you	could	receive	JavaScript	code	as	a	response.	This	code	will	look	completely	different	from	what	you	see	when	you	inspect	the	same	page	with	your	browser’s	developer	tools.	Note:	In	this	tutorial,	the	term	dynamic	website	refers	to	a	website	that	doesn’t	return	the	same	HTML
that	you	see	when	viewing	the	page	in	your	browser.	Dynamic	websites	are	designed	to	provide	their	functionality	in	collaboration	with	the	clients’	browsers.	Instead	of	sending	HTML	pages,	these	apps	send	JavaScript	code	that	instructs	your	browser	to	create	the	desired	HTML.	Web	apps	deliver	dynamic	content	this	way	to	offload	work	from	the
server	to	the	clients’	machines,	as	well	as	to	avoid	page	reloads	and	improve	the	overall	user	experience.	Your	browser	will	diligently	execute	the	JavaScript	code	it	receives	from	a	server	and	create	the	DOM	and	HTML	for	you	locally.	However,	if	you	request	a	dynamic	website	in	your	Python	script,	then	you	won’t	get	the	HTML	page	content.	When
you	use	Requests,	you	receive	only	what	the	server	sends	back.	In	the	case	of	a	dynamic	website,	you’ll	end	up	with	JavaScript	code	without	the	relevant	data.	The	only	way	to	go	from	that	code	to	the	content	that	you’re	interested	in	is	to	execute	the	code,	just	like	your	browser	does.	The	Requests	library	can’t	do	that	for	you,	but	there	are	other
solutions	that	can:	Requests-HTML	is	a	project	created	by	the	author	of	the	Requests	library	that	allows	you	to	render	JavaScript	using	syntax	that’s	similar	to	the	syntax	in	Requests.	It	also	includes	capabilities	for	parsing	the	data	by	using	Beautiful	Soup	under	the	hood.	Selenium	is	another	popular	choice	for	scraping	dynamic	content.	Selenium
automates	a	full	browser	and	can	execute	JavaScript,	allowing	you	to	interact	with	and	retrieve	the	fully	rendered	HTML	response	for	your	script.	You	won’t	go	deeper	into	scraping	dynamically-generated	content	in	this	tutorial.	If	you	need	to	scrape	a	dynamic	website,	then	you	can	look	into	one	of	the	options	mentioned	above.	You’ve	successfully
scraped	some	HTML	from	the	internet,	but	when	you	look	at	it,	it	looks	like	a	mess.	There	are	tons	of	HTML	elements	here	and	there,	thousands	of	attributes	scattered	around—and	maybe	there’s	some	JavaScript	mixed	in	as	well?	It’s	time	to	parse	this	lengthy	code	response	with	the	help	of	Python	to	make	it	more	accessible	so	you	can	pick	out	the
data	that	you	want.	Beautiful	Soup	is	a	Python	library	for	parsing	structured	data.	It	allows	you	to	interact	with	HTML	in	a	similar	way	to	how	you	interact	with	a	web	page	using	developer	tools.	The	library	exposes	intuitive	methods	that	you	can	use	to	explore	the	HTML	you	received.	Note:	The	name	Beautiful	Soup	originates	from	the	Lewis	Carroll
song	Beautiful	Soup	in	Alice’s	Adventures	in	Wonderland,	where	a	character	sings	about	beautiful	soup.	This	name	reflects	the	library’s	ability	to	parse	poorly	formed	HTML	that’s	also	known	as	tag	soup.	To	get	started,	use	your	terminal	to	install	Beautiful	Soup	into	your	virtual	environment:	Then,	import	the	library	in	your	Python	script	and	create	a
BeautifulSoup	object:	Copied!	When	you	add	the	two	highlighted	lines	of	code,	then	you	create	a	BeautifulSoup	object	that	takes	page.content	as	input,	which	is	the	HTML	content	that	you	scraped	earlier.	Note:	You’ll	want	to	pass	.content	instead	of	.text	to	avoid	problems	with	character	encoding.	The	.content	attribute	holds	raw	bytes,	which
Python’s	built-in	HTML	parser	can	decode	better	than	the	text	representation	you	printed	earlier	using	the	.text	attribute.	The	second	argument	that	you	pass	to	the	class	constructor,	"html.parser",	makes	sure	that	you	use	an	appropriate	parser	for	HTML	content.	At	this	point,	you’re	set	up	with	a	BeautifulSoup	object	that	you	named	soup.	You	can
now	run	your	script	using	Python’s	interactive	mode:	When	you	use	the	command-option	-i	to	run	a	script,	then	Python	executes	the	code	and	drops	you	into	a	REPL	environment.	This	can	be	a	good	way	to	continue	exploring	the	scraped	HTML	through	the	user-friendly	lens	of	Beautiful	Soup.	In	an	HTML	web	page,	every	element	can	have	an	id
attribute	assigned.	As	the	name	already	suggests,	that	id	attribute	makes	the	element	uniquely	identifiable	on	the	page.	You	can	begin	to	parse	your	page	by	selecting	a	specific	element	by	its	ID.	Switch	back	to	developer	tools	and	identify	the	HTML	object	that	contains	all	the	job	postings.	Explore	by	hovering	over	parts	of	the	page	and	using	right-
click	to	Inspect.	Note:	It	helps	to	periodically	switch	back	to	your	browser	and	explore	the	page	interactively	using	developer	tools.	You’ll	get	a	better	idea	of	where	and	how	to	find	the	exact	elements	that	you’re	looking	for.	In	this	case,	the	element	that	you’re	looking	for	is	a	with	an	id	attribute	that	has	the	value	"ResultsContainer".	It	has	some	other
attributes	as	well,	but	below	is	the	gist	of	what	you’re	looking	for:	Beautiful	Soup	allows	you	to	find	that	specific	HTML	element	by	its	ID:	For	easier	viewing,	you	can	prettify	any	BeautifulSoup	object	when	you	print	it	out.	If	you	call	.prettify()	on	the	results	variable	that	you	assigned	above,	then	you’ll	see	all	the	HTML	contained	within	the	neatly
structured:	When	you	find	an	element	by	its	ID,	you	can	pick	out	one	specific	element	from	among	the	rest	of	the	HTML,	no	matter	how	large	the	source	code	of	the	website	is.	Now	you	can	focus	on	working	with	only	this	part	of	the	page’s	HTML.	It	looks	like	your	soup	just	got	a	little	thinner!	Nevertheless,	it’s	still	quite	dense.	You’ve	seen	that	every
job	posting	is	wrapped	in	a	element	with	the	class	card-content.	Now	you	can	work	with	your	new	object	called	results	and	select	only	the	job	postings	in	it.	These	are,	after	all,	the	parts	of	the	HTML	that	you’re	interested	in!	You	can	pick	out	all	job	cards	in	a	single	line	of	code:	Here,	you	call	.find_all()	on	results,	which	is	a	BeautifulSoup	object.	It
returns	an	iterable	containing	all	the	HTML	for	all	the	job	listings	displayed	on	that	page.	Take	a	look	at	all	of	them:	That’s	pretty	neat	already,	but	there’s	still	a	lot	of	HTML!	You	saw	earlier	that	your	page	has	descriptive	class	names	on	some	elements.	You	can	pick	out	those	child	elements	from	each	job	posting	with	.find():	Each	job_card	is	another
BeautifulSoup()	object.	Therefore,	you	can	use	the	same	methods	on	it	as	you	did	on	its	parent	element,	results.	With	this	code	snippet,	you’re	getting	closer	and	closer	to	the	data	that	you’re	actually	interested	in.	Still,	there’s	a	lot	going	on	with	all	those	HTML	tags	and	attributes	floating	around:	Next,	you’ll	learn	how	to	narrow	down	this	output	to
access	only	the	text	content	that	you’re	interested	in.	You	only	want	to	see	the	title,	company,	and	location	of	each	job	posting.	And	behold!	Beautiful	Soup	has	got	you	covered.	You	can	add	.text	to	a	BeautifulSoup	object	to	return	only	the	text	content	of	the	HTML	elements	that	the	object	contains:	Run	the	above	code	snippet,	and	you’ll	see	the	text
of	each	element	displayed.	However,	you’ll	also	get	some	extra	whitespace.	But	no	worries,	because	you’re	working	with	Python	strings	so	you	can	.strip()	the	superfluous	whitespace.	You	can	also	apply	any	other	familiar	Python	string	methods	to	further	clean	up	your	text:	The	results	finally	look	much	better!	You’ve	now	got	a	readable	list	of	jobs,
associated	company	names,	and	each	job’s	location.	However,	you’re	specifically	looking	for	a	position	as	a	software	developer,	and	these	results	contain	job	postings	in	many	other	fields	as	well.	Not	all	of	the	job	listings	are	developer	jobs.	Instead	of	printing	out	all	the	jobs	listed	on	the	website,	you’ll	first	filter	them	using	keywords.	You	know	that
job	titles	in	the	page	are	kept	within

elements.	To	filter	for	only	specific	jobs,	you	can	use	the	string	argument:	This	code	finds	all

elements	where	the	contained	string	matches	"Python"	exactly.	Note	that	you’re	directly	calling	the	method	on	your	first	results	variable.	If	you	go	ahead	and	print()	the	output	of	the	above	code	snippet	to	your
console,	then	you	might	be	disappointed	because	it’ll	be	empty:	There	was	a	Python	job	in	the	search	results,	so	why	isn’t	it	showing	up?	When	you	use	string	as	you	did	above,	your	program	looks	for	that	string
exactly.	Any	variations	in	the	spelling,	capitalization,	or	whitespace	will	prevent	the	element	from	matching.	In	the	next	section,	you’ll	find	a	way	to	make	your	search	string	more	general.	In	addition	to	strings,
you	can	sometimes	pass	functions	as	arguments	to	Beautiful	Soup	methods.	You	can	change	the	previous	line	of	code	to	use	a	function	instead:	Now	you’re	passing	an	anonymous	function	to	the	string	argument.
The	lambda	function	looks	at	the	text	of	each

element,	converts	it	to	lowercase,	and	checks	whether	the	substring	"python"	is	found	anywhere.	You	can	check	whether	you	managed	to	identify	all	the	Python	jobs	with	this	approach:	Your	program	has	found
ten	matching	job	posts	that	include	the	word	"python"	in	their	job	title!	Finding	elements	based	on	their	text	content	is	a	powerful	way	to	filter	your	HTML	response	for	specific	information.	Beautiful	Soup	allows
you	to	use	exact	strings	or	functions	as	arguments	for	filtering	text	in	BeautifulSoup	objects.	However,	when	you	try	to	print	the	information	of	the	filtered	Python	jobs	like	you’ve	done	before,	you	run	into	an
error:	This	traceback	message	is	a	common	error	that	you’ll	run	into	a	lot	when	you’re	scraping	information	from	the	internet.	Inspect	the	HTML	of	an	element	in	your	python_jobs	list.	What	does	it	look	like?
Where	do	you	think	the	error	is	coming	from?	When	you	look	at	a	single	element	in	python_jobs,	you’ll	see	that	it	consists	of	only	the

element	that	contains	the	job	title:	When	you	revisit	the	code	you	used	to	select	the	items,	you’ll	notice	that’s	what	you	targeted.	You	filtered	for	only	the

title	elements	of	the	job	postings	that	contain	the	word	"python".	As	you	can	see,	these	elements	don’t	include	the	rest	of	the	information	about	the	job.	The	error	message	you	received	earlier	was	related	to	this:
You	tried	to	find	the	job	title,	the	company	name,	and	the	job’s	location	in	each	element	in	python_jobs,	but	each	element	contains	only	the	job	title	text.	Your	diligent	parsing	library	still	looks	for	the	other	ones,
too,	and	returns	None	because	it	can’t	find	them.	Then,	print()	fails	with	the	shown	error	message	when	you	try	to	extract	the	.text	attribute	from	one	of	these	None	objects.	The	text	you’re	looking	for	is	nested	in
sibling	elements	of	the

elements	that	your	filter	returns.	Beautiful	Soup	can	help	you	select	sibling,	child,	and	parent	elements	of	each	BeautifulSoup	object.	One	way	to	get	access	to	all	the	information	for	a	job	is	to	step	up	in	the
hierarchy	of	the	DOM	starting	from	the

elements	that	you	identified.	Take	another	look	at	the	HTML	of	a	single	job	posting,	for	example,	using	your	developer	tools.	Then,	find	the

element	that	contains	the	job	title	and	its	closest	parent	element	that	contains	the	information	you’re	interested	in:	The	element	with	the	card-content	class	contains	all	the	information	you	want.	It’s	a	third-level
parent	of	the

title	element	that	you	found	using	your	filter.	With	this	information	in	mind,	you	can	now	use	the	elements	in	python_jobs	and	fetch	their	great-grandparent	elements	to	get	access	to	all	the	information	you	want:
You	added	a	list	comprehension	that	operates	on	each	of	the

title	elements	in	python_jobs	that	you	got	by	filtering	with	the	lambda	expression.	You’re	selecting	the	parent	element	of	the	parent	element	of	the	parent	element	of	each

title	element.	That’s	three	generations	up!	When	you	were	looking	at	the	HTML	of	a	single	job	posting,	you	identified	that	this	specific	parent	element	with	the	class	name	card-content	contains	all	the
information	you	need.	Now	you	can	adapt	the	code	in	your	for	loop	to	iterate	over	the	parent	elements	instead:	When	you	run	your	script	another	time,	you’ll	see	that	your	code	once	again	has	access	to	all	the
relevant	information.	That’s	because	you’re	now	looping	over	the	elements	instead	of	just	the

title	elements.	Using	the	.parent	attribute	that	each	BeautifulSoup	object	comes	with	gives	you	an	intuitive	way	to	step	through	your	DOM	structure	and	address	the	elements	you	need.	You	can	also	access	child
elements	and	sibling	elements	in	a	similar	manner.	Read	up	on	navigating	the	tree	for	more	information.	At	this	point,	you’ve	already	written	code	that	scrapes	the	site	and	filters	its	HTML	for	relevant	job
postings.	Well	done!	However,	what’s	still	missing	is	fetching	the	link	to	apply	for	a	job.	While	inspecting	the	page,	you	found	two	links	at	the	bottom	of	each	card.	If	you	use	.text	on	the	link	elements	in	the	same
way	you	did	for	the	other	elements,	then	you	won’t	get	the	URLs	that	you’re	interested	in:	If	you	execute	the	code	shown	above,	then	you’ll	get	the	link	text	for	Learn	and	Apply	instead	of	the	associated	URLs.
That’s	because	the	.text	attribute	leaves	only	the	visible	content	of	an	HTML	element.	It	strips	away	all	HTML	tags,	including	the	HTML	attributes	containing	the	URL,	and	leaves	you	with	just	the	link	text.	To	get
the	URL	instead,	you	need	to	extract	the	value	of	one	of	the	HTML	attributes	instead	of	discarding	it.	The	URL	of	a	link	element	is	associated	with	the	href	HTML	attribute.	The	specific	URL	that	you’re	looking	for
is	the	value	of	the	href	attribute	of	the	second	tag	at	the	bottom	of	the	HTML	for	a	single	job	posting:	Start	by	fetching	all	the	elements	in	a	job	card.	Then,	extract	the	value	of	their	href	attributes	using	square-
bracket	notation:	In	this	code	snippet,	you	first	fetch	all	the	links	from	each	of	the	filtered	job	postings.	Then,	you	extract	the	href	attribute,	which	contains	the	URL,	using	["href"]	and	print	it	to	your	console.
Each	job	card	has	two	links	associated	with	it.	However,	you’re	only	looking	for	the	second	link,	so	you’ll	apply	a	small	edit	to	the	code:	In	the	updated	code	snippet,	you	use	indexing	to	pick	the	second	link
element	from	the	results	of	.find_all()	using	its	index	([1]).	Then,	you	directly	extract	the	URL	using	the	square-bracket	notation	with	the	"href"	key,	thereby	fetching	the	value	of	the	href	attribute.	You	can	use
the	same	square-bracket	notation	to	extract	other	HTML	attributes	as	well.	You’re	now	happy	with	the	results	and	are	ready	to	put	it	all	together	into	your	scraper.py	script.	When	you	assemble	the	useful	lines	of
code	that	you	wrote	during	your	exploration,	you’ll	end	up	with	a	Python	web	scraping	script	that	extracts	the	job	title,	company,	location,	and	application	link	from	the	scraped	website:	Copied!	You	could
continue	to	work	on	your	script	and	refactor	it,	but	at	this	point,	it	does	the	job	you	wanted	and	presents	you	with	the	information	you	need	when	you	want	to	apply	for	a	Python	developer	job:	All	you	need	to	do
now	to	check	for	new	Python	jobs	on	the	job	board	is	run	your	Python	script.	This	leaves	you	with	plenty	of	time	to	get	out	there	and	catch	some	waves!	If	you’ve	written	the	code	alongside	this	tutorial,	then	you
can	run	your	script	as	is	to	see	the	fake	job	information	pop	up	in	your	terminal.	Your	next	step	is	to	tackle	a	real-life	job	board!	To	keep	practicing	your	new	skills,	you	can	revisit	the	web	scraping	process
described	in	this	tutorial	by	using	any	or	all	of	the	following	sites:	Python.org	Job	Board	PythonJobs	Remote	The	linked	websites	return	their	search	results	as	static	HTML	responses,	similar	to	the	Fake	Python
job	board.	Therefore,	you	can	scrape	them	using	only	Requests	and	Beautiful	Soup.	Start	going	through	this	tutorial	again	from	the	beginning	using	one	of	these	other	sites.	You’ll	see	that	each	website’s
structure	is	different	and	that	you’ll	need	to	rebuild	the	code	in	a	slightly	different	way	to	fetch	the	data	you	want.	Tackling	this	challenge	is	a	great	way	to	practice	the	concepts	that	you	just	learned.	While	it
might	make	you	sweat	every	so	often,	your	coding	skills	will	be	stronger	in	the	end!	During	your	second	attempt,	you	can	also	explore	additional	features	of	Beautiful	Soup.	Use	the	documentation	as	your
guidebook	and	inspiration.	Extra	practice	will	help	you	become	more	proficient	at	web	scraping	with	Python,	Requests,	and	Beautiful	Soup.	To	wrap	up	your	journey,	you	could	then	give	your	code	a	final
makeover	and	create	a	command-line	interface	(CLI)	app	that	scrapes	one	of	the	job	boards	and	filters	the	results	by	a	keyword	that	you	can	input	on	each	execution.	Your	CLI	tool	could	allow	you	to	search	for
specific	types	of	jobs,	or	jobs	in	particular	locations.	If	you’re	interested	in	learning	how	to	adapt	your	script	as	a	command-line	interface,	then	check	out	the	Build	Command-Line	Interfaces	With	Python’s
argparse	tutorial.	The	Requests	library	provides	a	user-friendly	way	to	scrape	static	HTML	from	the	internet	with	Python.	You	can	then	parse	the	HTML	with	another	package	called	Beautiful	Soup.	You’ll	find	that
Beautiful	Soup	will	cater	to	most	of	your	parsing	needs,	including	navigation	and	advanced	searching.	Both	packages	will	be	trusted	and	helpful	companions	on	your	web	scraping	adventures.	In	this	tutorial,
you’ve	learned	how	to:	Step	through	a	web	scraping	pipeline	from	start	to	finish	Inspect	the	HTML	structure	of	your	target	site	with	your	browser’s	developer	tools	Decipher	the	data	encoded	in	URLs	Download
the	page’s	HTML	content	using	Python’s	Requests	library	Parse	the	downloaded	HTML	with	Beautiful	Soup	to	extract	relevant	information	Build	a	script	that	fetches	job	offers	from	the	web	and	displays	relevant
information	in	your	console	With	this	broad	pipeline	in	mind	and	two	powerful	libraries	in	your	toolkit,	you	can	go	out	and	see	what	other	websites	you	can	scrape.	Have	fun,	and	always	remember	to	be	respectful
and	use	your	programming	skills	responsibly.	Happy	scraping!	Now	that	you	have	some	experience	with	Beautiful	Soup	and	web	scraping	in	Python,	you	can	use	the	questions	and	answers	below	to	check	your
understanding	and	recap	what	you’ve	learned.	These	FAQs	are	related	to	the	most	important	concepts	you’ve	covered	in	this	tutorial.	Click	the	Show/Hide	toggle	beside	each	question	to	reveal	the	answer:	Web
scraping	is	the	automated	process	of	extracting	data	from	websites.	It’s	useful	because	it	allows	you	to	gather	large	amounts	of	data	efficiently	and	systematically,	which	can	be	beneficial	for	research,	data
analysis,	or	keeping	track	of	updates	on	specific	sites,	such	as	job	postings.	You	can	use	your	browser’s	developer	tools	to	inspect	the	HTML	structure	of	a	website.	To	do	this,	right-click	on	any	element	of	the
page	and	select	Inspect.	This	will	allow	you	to	view	the	underlying	HTML	code,	helping	you	understand	how	the	data	you	want	is	structured.	The	Requests	library	is	used	to	send	HTTP	requests	to	a	website	and
retrieve	the	HTML	content	of	the	web	page.	You’ll	need	to	get	the	raw	HTML	before	you	can	parse	and	process	it	with	Beautiful	Soup.	Beautiful	Soup	is	a	Python	library	used	for	parsing	HTML	and	XML
documents.	It	provides	Pythonic	idioms	for	iterating,	searching,	and	modifying	the	parse	tree,	making	it	easier	to	extract	the	necessary	data	from	the	HTML	content	you	scraped	from	the	internet.	Some
challenges	include	handling	dynamic	content	generated	by	JavaScript,	accessing	login-protected	pages,	dealing	with	changes	in	website	structure	that	could	break	your	scraper,	and	navigating	legal	issues	related
to	the	terms	of	service	of	the	websites	you’re	scraping.	It’s	important	to	approach	this	work	responsibly	and	ethically.	Take	the	Quiz:	Test	your	knowledge	with	our	interactive	“Beautiful	Soup:	Build	a	Web
Scraper	With	Python”	quiz.	You’ll	receive	a	score	upon	completion	to	help	you	track	your	learning	progress:	Interactive	Quiz	Beautiful	Soup:	Build	a	Web	Scraper	With	Python	In	this	quiz,	you'll	test	your
understanding	of	web	scraping	using	Python.	By	working	through	this	quiz,	you'll	revisit	how	to	inspect	the	HTML	structure	of	a	target	site,	decipher	data	encoded	in	URLs,	and	use	Requests	and	Beautiful	Soup
for	scraping	and	parsing	data.	Watch	Now	This	tutorial	has	a	related	video	course	created	by	the	Real	Python	team.	Watch	it	together	with	the	written	tutorial	to	deepen	your	understanding:	Web	Scraping	With
Beautiful	Soup	and	Python

