
	

https://kaxepuxonofuk.godoxevez.com/197312669403774871469154063803829389968331?koberoxozedasiradesanerur=bobaligupevulasapanemadokoxetutaxusopagufamuzusulijifupetolaxegujusoboluwurudofimogebovewulixutelumusaxepubopekefimizuwowiterupenowobebomuxuzepewuzokabitowigiwatibixerasabafurozejajovezimimuwigozogewonaroj&utm_term=arm+instruction+set&zepubenafizugusonikorobotidogo=mizujerinokivilimosokasuviwabigazidewugutawozomekuvipojudagegesulovipozibuvajowosetejuwiketifumulesenutilugapimanopowugedilabepesopafevozenafabol

Arm	instruction	set

Family	of	computer	architectures	"ARM	architecture"	redirects	here.	For	the	Australian	architectural	firm,	see	ARM	Architecture	(company).	ARMDesigner	Sophie	Wilson	Steve	Furber	Acorn	Computers/Arm	Holdings	Bits32-bit,	64-bitIntroduced1985;	40	years	ago	(1985)DesignRISCTypeLoad–storeBranchingCondition	code,	compare	and
branchOpenProprietary	ARM	AArch64	(64/32-bit)Introduced2011;	14	years	ago	(2011)VersionARMv8-R,	ARMv8-A,	ARMv8.1-A,	ARMv8.2-A,	ARMv8.3-A,	ARMv8.4-A,	ARMv8.5-A,	ARMv8.6-A,	ARMv8.7-A,	ARMv8.8-A,	ARMv8.9-A,	ARMv9.0-A,	ARMv9.1-A,	ARMv9.2-A,	ARMv9.3-A,	ARMv9.4-A,	ARMv9.5-A,	ARMv9.6-AEncodingAArch64/A64	and
AArch32/A32	use	32-bit	instructions,	AArch32/T32	(Thumb-2)	uses	mixed	16-	and	32-bit	instructions[1]EndiannessBi	(little	as	default)ExtensionsSVE,	SVE2,	SME,	AES,	SM3,	SM4,	SHA,	CRC32,	RNDR,	TME;	All	mandatory:	Thumb-2,	Neon,	VFPv4-D16,	VFPv4;	obsolete:	Thumb	and	JazelleRegistersGeneral-purpose31	×	64-bit	integer
registers[1]Floating	point32	×	128-bit	registers[1]	for	scalar	32-	and	64-bit	FP	or	SIMD	FP	or	integer;	or	cryptography	ARM	AArch32	(32-bit)VersionARMv9-R,	ARMv9-M,	ARMv8-R,	ARMv8-M,	ARMv7-A,	ARMv7-R,	ARMv7E-M,	ARMv7-MEncoding32-bit,	except	Thumb-2	extensions	use	mixed	16-	and	32-bit	instructions.EndiannessBi	(little	as
default)ExtensionsThumb,	Thumb-2,	Neon,	Jazelle,	AES,	SM3,	SM4,	SHA,	CRC32,	RNDR,	DSP,	Saturated,	FPv4-SP,	FPv5,	Helium;	obsolete	since	ARMv8:	Thumb	and	JazelleRegistersGeneral-purpose15	×	32-bit	integer	registers,	including	R14	(link	register),	but	not	R15	(PC)Floating	pointUp	to	32	×	64-bit	registers,[2]	SIMD/floating-point	(optional)
ARM	32-bit	(legacy)VersionARMv6,	ARMv5,	ARMv4T,	ARMv3,	ARMv2Encoding32-bit,	except	Thumb	extension	uses	mixed	16-	and	32-bit	instructions.EndiannessBi	(little	as	default)	in	ARMv3	and	aboveExtensionsThumb,	JazelleRegistersGeneral-purpose15	×	32-bit	integer	registers,	including	R14	(link	register),	but	not	R15	(PC,	26-bit	addressing	in
older)Floating	pointNone	ARM	(stylised	in	lowercase	as	arm,	formerly	an	acronym	for	Advanced	RISC	Machines	and	originally	Acorn	RISC	Machine)	is	a	family	of	RISC	instruction	set	architectures	(ISAs)	for	computer	processors.	Arm	Holdings	develops	the	ISAs	and	licenses	them	to	other	companies,	who	build	the	physical	devices	that	use	the
instruction	set.	It	also	designs	and	licenses	cores	that	implement	these	ISAs.	Due	to	their	low	costs,	low	power	consumption,	and	low	heat	generation,	ARM	processors	are	useful	for	light,	portable,	battery-powered	devices,	including	smartphones,	laptops,	and	tablet	computers,	as	well	as	embedded	systems.[3][4][5]	However,	ARM	processors	are	also
used	for	desktops	and	servers,	including	Fugaku,	the	world's	fastest	supercomputer	from	2020[6]	to	2022.	With	over	230	billion	ARM	chips	produced,[7][8]	since	at	least	2003,	and	with	its	dominance	increasing	every	year[update],	ARM	is	the	most	widely	used	family	of	instruction	set	architectures.[9][4][10][11][12]	There	have	been	several
generations	of	the	ARM	design.	The	original	ARM1	used	a	32-bit	internal	structure	but	had	a	26-bit	address	space	that	limited	it	to	64	MB	of	main	memory.	This	limitation	was	removed	in	the	ARMv3	series,	which	has	a	32-bit	address	space,	and	several	additional	generations	up	to	ARMv7	remained	32-bit.	Released	in	2011,	the	ARMv8-A	architecture
added	support	for	a	64-bit	address	space	and	64-bit	arithmetic	with	its	new	32-bit	fixed-length	instruction	set.[13]	Arm	Holdings	has	also	released	a	series	of	additional	instruction	sets	for	different	roles:	the	"Thumb"	extensions	add	both	32-	and	16-bit	instructions	for	improved	code	density,	while	Jazelle	added	instructions	for	directly	handling	Java
bytecode.	More	recent	changes	include	the	addition	of	simultaneous	multithreading	(SMT)	for	improved	performance	or	fault	tolerance.[14]	Main	article:	BBC	Micro	Acorn	Computers'	first	widely	successful	design	was	the	BBC	Micro,	introduced	in	December	1981.	This	was	a	relatively	conventional	machine	based	on	the	MOS	Technology	6502	CPU
but	ran	at	roughly	double	the	performance	of	competing	designs	like	the	Apple	II	due	to	its	use	of	faster	dynamic	random-access	memory	(DRAM).	Typical	DRAM	of	the	era	ran	at	about	2	MHz;	Acorn	arranged	a	deal	with	Hitachi	for	a	supply	of	faster	4	MHz	parts.[15]	Machines	of	the	era	generally	shared	memory	between	the	processor	and	the
framebuffer,	which	allowed	the	processor	to	quickly	update	the	contents	of	the	screen	without	having	to	perform	separate	input/output	(I/O).	As	the	timing	of	the	video	display	is	exacting,	the	video	hardware	had	to	have	priority	access	to	that	memory.	Due	to	a	quirk	of	the	6502's	design,	the	CPU	left	the	memory	untouched	for	half	of	the	time.	Thus	by
running	the	CPU	at	1	MHz,	the	video	system	could	read	data	during	those	down	times,	taking	up	the	total	2	MHz	bandwidth	of	the	RAM.	In	the	BBC	Micro,	the	use	of	4	MHz	RAM	allowed	the	same	technique	to	be	used,	but	running	at	twice	the	speed.	This	allowed	it	to	outperform	any	similar	machine	on	the	market.[16]	Main	article:	Acorn	Business
Computer	1981	was	also	the	year	that	the	IBM	Personal	Computer	was	introduced.	Using	the	recently	introduced	Intel	8088,	a	16-bit	CPU	compared	to	the	6502's	8-bit	design,	it	offered	higher	overall	performance.	Its	introduction	changed	the	desktop	computer	market	radically:	what	had	been	largely	a	hobby	and	gaming	market	emerging	over	the
prior	five	years	began	to	change	to	a	must-have	business	tool	where	the	earlier	8-bit	designs	simply	could	not	compete.	Even	newer	32-bit	designs	were	also	coming	to	market,	such	as	the	Motorola	68000[17]	and	National	Semiconductor	NS32016.[18]	Acorn	began	considering	how	to	compete	in	this	market	and	produced	a	new	paper	design	named
the	Acorn	Business	Computer.	They	set	themselves	the	goal	of	producing	a	machine	with	ten	times	the	performance	of	the	BBC	Micro,	but	at	the	same	price.[19]	This	would	outperform	and	underprice	the	PC.	At	the	same	time,	the	recent	introduction	of	the	Apple	Lisa	brought	the	graphical	user	interface	(GUI)	concept	to	a	wider	audience	and
suggested	the	future	belonged	to	machines	with	a	GUI.[20]	The	Lisa,	however,	cost	$9,995,	as	it	was	packed	with	support	chips,	large	amounts	of	memory,	and	a	hard	disk	drive,	all	very	expensive	then.[21]	The	engineers	then	began	studying	all	of	the	CPU	designs	available.	Their	conclusion	about	the	existing	16-bit	designs	was	that	they	were	a	lot
more	expensive	and	were	still	"a	bit	crap",[22]	offering	only	slightly	higher	performance	than	their	BBC	Micro	design.	They	also	almost	always	demanded	a	large	number	of	support	chips	to	operate	even	at	that	level,	which	drove	up	the	cost	of	the	computer	as	a	whole.	These	systems	would	simply	not	hit	the	design	goal.[22]	They	also	considered	the
new	32-bit	designs,	but	these	cost	even	more	and	had	the	same	issues	with	support	chips.[23]	According	to	Sophie	Wilson,	all	the	processors	tested	at	that	time	performed	about	the	same,	with	about	a	4	Mbit/s	bandwidth.[24][a]	Two	key	events	led	Acorn	down	the	path	to	ARM.	One	was	the	publication	of	a	series	of	reports	from	the	University	of
California,	Berkeley,	which	suggested	that	a	simple	chip	design	could	nevertheless	have	extremely	high	performance,	much	higher	than	the	latest	32-bit	designs	on	the	market.[25]	The	second	was	a	visit	by	Steve	Furber	and	Sophie	Wilson	to	the	Western	Design	Center,	a	company	run	by	Bill	Mensch	and	his	sister,	which	had	become	the	logical
successor	to	the	MOS	team	and	was	offering	new	versions	like	the	WDC	65C02.	The	Acorn	team	saw	high	school	students	producing	chip	layouts	on	Apple	II	machines,	which	suggested	that	anyone	could	do	it.[26][27]	In	contrast,	a	visit	to	another	design	firm	working	on	modern	32-bit	CPU	revealed	a	team	with	over	a	dozen	members	who	were
already	on	revision	H	of	their	design	and	yet	it	still	contained	bugs.[b]	This	cemented	their	late	1983	decision	to	begin	their	own	CPU	design,	the	Acorn	RISC	Machine.[28]	The	original	Berkeley	RISC	designs	were	in	some	sense	teaching	systems,	not	designed	specifically	for	outright	performance.	To	the	RISC's	basic	register-heavy	and	load/store
concepts,	ARM	added	a	number	of	the	well-received	design	notes	of	the	6502.	Primary	among	them	was	the	ability	to	quickly	serve	interrupts,	which	allowed	the	machines	to	offer	reasonable	input/output	performance	with	no	added	external	hardware.	To	offer	interrupts	with	similar	performance	as	the	6502,	the	ARM	design	limited	its	physical
address	space	to	64	MB	of	total	addressable	space,	requiring	26	bits	of	address.	As	instructions	were	4	bytes	(32	bits)	long,	and	required	to	be	aligned	on	4-byte	boundaries,	the	lower	2	bits	of	an	instruction	address	were	always	zero.	This	meant	the	program	counter	(PC)	only	needed	to	be	24	bits,	allowing	it	to	be	stored	along	with	the	eight	bit
processor	flags	in	a	single	32-bit	register.	That	meant	that	upon	receiving	an	interrupt,	the	entire	machine	state	could	be	saved	in	a	single	operation,	whereas	had	the	PC	been	a	full	32-bit	value,	it	would	require	separate	operations	to	store	the	PC	and	the	status	flags.	This	decision	halved	the	interrupt	overhead.[29]	Another	change,	and	among	the
most	important	in	terms	of	practical	real-world	performance,	was	the	modification	of	the	instruction	set	to	take	advantage	of	page	mode	DRAM.	Recently	introduced,	page	mode	allowed	subsequent	accesses	of	memory	to	run	twice	as	fast	if	they	were	roughly	in	the	same	location,	or	"page",	in	the	DRAM	chip.	Berkeley's	design	did	not	consider	page
mode	and	treated	all	memory	equally.	The	ARM	design	added	special	vector-like	memory	access	instructions,	the	"S-cycles",	that	could	be	used	to	fill	or	save	multiple	registers	in	a	single	page	using	page	mode.	This	doubled	memory	performance	when	they	could	be	used,	and	was	especially	important	for	graphics	performance.[30]	The	Berkeley	RISC
designs	used	register	windows	to	reduce	the	number	of	register	saves	and	restores	performed	in	procedure	calls;	the	ARM	design	did	not	adopt	this.	Wilson	developed	the	instruction	set,	writing	a	simulation	of	the	processor	in	BBC	BASIC	that	ran	on	a	BBC	Micro	with	a	second	6502	processor.[31][32]	This	convinced	Acorn	engineers	they	were	on
the	right	track.	Wilson	approached	Acorn's	CEO,	Hermann	Hauser,	and	requested	more	resources.	Hauser	gave	his	approval	and	assembled	a	small	team	to	design	the	actual	processor	based	on	Wilson's	ISA.[33]	The	official	Acorn	RISC	Machine	project	started	in	October	1983.	ARM1	2nd	processor	for	the	BBC	Micro	Acorn	chose	VLSI	Technology	as
the	"silicon	partner",	as	they	were	a	source	of	ROMs	and	custom	chips	for	Acorn.	Acorn	provided	the	design	and	VLSI	provided	the	layout	and	production.	The	first	samples	of	ARM	silicon	worked	properly	when	first	received	and	tested	on	26	April	1985.[3]	Known	as	ARM1,	these	versions	ran	at	6	MHz.[34]	The	first	ARM	application	was	as	a	second
processor	for	the	BBC	Micro,	where	it	helped	in	developing	simulation	software	to	finish	development	of	the	support	chips	(VIDC,	IOC,	MEMC),	and	sped	up	the	CAD	software	used	in	ARM2	development.	Wilson	subsequently	rewrote	BBC	BASIC	in	ARM	assembly	language.	The	in-depth	knowledge	gained	from	designing	the	instruction	set	enabled	the
code	to	be	very	dense,	making	ARM	BBC	BASIC	an	extremely	good	test	for	any	ARM	emulator.	The	result	of	the	simulations	on	the	ARM1	boards	led	to	the	late	1986	introduction	of	the	ARM2	design	running	at	8	MHz,	and	the	early	1987	speed-bumped	version	at	10	to	12	MHz.[c]	A	significant	change	in	the	underlying	architecture	was	the	addition	of
a	Booth	multiplier,	whereas	formerly	multiplication	had	to	be	carried	out	in	software.[36]	Further,	a	new	Fast	Interrupt	reQuest	mode,	FIQ	for	short,	allowed	registers	8	through	14	to	be	replaced	as	part	of	the	interrupt	itself.	This	meant	FIQ	requests	did	not	have	to	save	out	their	registers,	further	speeding	interrupts.[37]	The	first	use	of	the	ARM2
were	in	ARM	Evaluations	systems,	supplied	as	a	second	processor	for	BBC	Micro	and	Master	machines,	from	July	1986,[38]	internal	Acorn	A500	development	machines,[39]	and	the	Acorn	Archimedes	personal	computer	models	A305,	A310,	and	A440,	launched	on	the	6th	June	1987.	According	to	the	Dhrystone	benchmark,	the	ARM2	was	roughly
seven	times	the	performance	of	a	typical	7	MHz	68000-based	system	like	the	Amiga	or	Macintosh	SE.	It	was	twice	as	fast	as	an	Intel	80386	running	at	16	MHz,	and	about	the	same	speed	as	a	multi-processor	VAX-11/784	superminicomputer.	The	only	systems	that	beat	it	were	the	Sun	SPARC	and	MIPS	R2000	RISC-based	workstations.[40]	Further,	as
the	CPU	was	designed	for	high-speed	I/O,	it	dispensed	with	many	of	the	support	chips	seen	in	these	machines;	notably,	it	lacked	any	dedicated	direct	memory	access	(DMA)	controller	which	was	often	found	on	workstations.	The	graphics	system	was	also	simplified	based	on	the	same	set	of	underlying	assumptions	about	memory	and	timing.	The	result
was	a	dramatically	simplified	design,	offering	performance	on	par	with	expensive	workstations	but	at	a	price	point	similar	to	contemporary	desktops.[40]	The	ARM2	featured	a	32-bit	data	bus,	26-bit	address	space	and	27	32-bit	registers,	of	which	16	are	accessible	at	any	one	time	(including	the	PC).[41]	The	ARM2	had	a	transistor	count	of	just	30,000,
[42]	compared	to	Motorola's	six-year-older	68000	model	with	around	68,000.	Much	of	this	simplicity	came	from	the	lack	of	microcode,	which	represents	about	one-quarter	to	one-third	of	the	68000's	transistors,	and	the	lack	of	(like	most	CPUs	of	the	day)	a	cache.	This	simplicity	enabled	the	ARM2	to	have	a	low	power	consumption	and	simpler	thermal
packaging	by	having	fewer	powered	transistors.	Nevertheless,	ARM2	offered	better	performance	than	the	contemporary	1987	IBM	PS/2	Model	50,	which	initially	utilised	an	Intel	80286,	offering	1.8	MIPS	@	10	MHz,	and	later	in	1987,	the	2	MIPS	of	the	PS/2	70,	with	its	Intel	386	DX	@	16	MHz.[43][44]	A	successor,	ARM3,	was	produced	with	a	4	KB
cache,	which	further	improved	performance.[45]	The	address	bus	was	extended	to	32	bits	in	the	ARM6,	but	program	code	still	had	to	lie	within	the	first	64	MB	of	memory	in	26-bit	compatibility	mode,	due	to	the	reserved	bits	for	the	status	flags.[46]	Microprocessor-based	system	on	a	chip	Die	of	an	ARM610	microprocessor	In	the	late	1980s,	Apple
Computer	and	VLSI	Technology	started	working	with	Acorn	on	newer	versions	of	the	ARM	core.	In	1990,	Acorn	spun	off	the	design	team	into	a	new	company	named	Advanced	RISC	Machines	Ltd.,[47][48][49]	which	became	ARM	Ltd.	when	its	parent	company,	Arm	Holdings	plc,	floated	on	the	London	Stock	Exchange	and	Nasdaq	in	1998.[50]	The	new
Apple–ARM	work	would	eventually	evolve	into	the	ARM6,	first	released	in	early	1992.	Apple	used	the	ARM6-based	ARM610	as	the	basis	for	their	Apple	Newton	PDA.	In	1994,	Acorn	used	the	ARM610	as	the	main	central	processing	unit	(CPU)	in	their	RiscPC	computers.	DEC	licensed	the	ARMv4	architecture	and	produced	the	StrongARM.[51]	At
233	MHz,	this	CPU	drew	only	one	watt	(newer	versions	draw	far	less).	This	work	was	later	passed	to	Intel	as	part	of	a	lawsuit	settlement,	and	Intel	took	the	opportunity	to	supplement	their	i960	line	with	the	StrongARM.	Intel	later	developed	its	own	high	performance	implementation	named	XScale,	which	it	has	since	sold	to	Marvell.	Transistor	count
of	the	ARM	core	remained	essentially	the	same	throughout	these	changes;	ARM2	had	30,000	transistors,[52]	while	ARM6	grew	only	to	35,000.[53]	In	2005,	about	98%	of	all	mobile	phones	sold	used	at	least	one	ARM	processor.[54]	In	2010,	producers	of	chips	based	on	ARM	architectures	reported	shipments	of	6.1	billion	ARM-based	processors,
representing	95%	of	smartphones,	35%	of	digital	televisions	and	set-top	boxes,	and	10%	of	mobile	computers.	In	2011,	the	32-bit	ARM	architecture	was	the	most	widely	used	architecture	in	mobile	devices	and	the	most	popular	32-bit	one	in	embedded	systems.[55]	In	2013,	10	billion	were	produced[56]	and	"ARM-based	chips	are	found	in	nearly	60
percent	of	the	world's	mobile	devices".[57]	See	also:	Arm	Holdings	§	Licensees	Die	of	a	STM32​F103VGT6	ARM	Cortex-M3	microcontroller	with	1	MB	flash	memory	by	STMicroelectronics	Arm	Holdings's	primary	business	is	selling	IP	cores,	which	licensees	use	to	create	microcontrollers	(MCUs),	CPUs,	and	systems-on-chips	based	on	those	cores.	The
original	design	manufacturer	combines	the	ARM	core	with	other	parts	to	produce	a	complete	device,	typically	one	that	can	be	built	in	existing	semiconductor	fabrication	plants	(fabs)	at	low	cost	and	still	deliver	substantial	performance.	The	most	successful	implementation	has	been	the	ARM7TDMI	with	hundreds	of	millions	sold.	Atmel	has	been	a
precursor	design	center	in	the	ARM7TDMI-based	embedded	system.	The	ARM	architectures	used	in	smartphones,	PDAs	and	other	mobile	devices	range	from	ARMv5	to	ARMv8-A.	In	2009,	some	manufacturers	introduced	netbooks	based	on	ARM	architecture	CPUs,	in	direct	competition	with	netbooks	based	on	Intel	Atom.[58]	Arm	Holdings	offers	a
variety	of	licensing	terms,	varying	in	cost	and	deliverables.	Arm	Holdings	provides	to	all	licensees	an	integratable	hardware	description	of	the	ARM	core	as	well	as	complete	software	development	toolset	(compiler,	debugger,	software	development	kit),	and	the	right	to	sell	manufactured	silicon	containing	the	ARM	CPU.	SoC	packages	integrating
ARM's	core	designs	include	Nvidia	Tegra's	first	three	generations,	CSR	plc's	Quatro	family,	ST-Ericsson's	Nova	and	NovaThor,	Silicon	Labs's	Precision32	MCU,	Texas	Instruments's	OMAP	products,	Samsung's	Hummingbird	and	Exynos	products,	Apple's	A4,	A5,	and	A5X,	and	NXP's	i.MX.	Fabless	licensees,	who	wish	to	integrate	an	ARM	core	into	their
own	chip	design,	are	usually	only	interested	in	acquiring	a	ready-to-manufacture	verified	semiconductor	intellectual	property	core.	For	these	customers,	Arm	Holdings	delivers	a	gate	netlist	description	of	the	chosen	ARM	core,	along	with	an	abstracted	simulation	model	and	test	programs	to	aid	design	integration	and	verification.	More	ambitious
customers,	including	integrated	device	manufacturers	(IDM)	and	foundry	operators,	choose	to	acquire	the	processor	IP	in	synthesizable	RTL	(Verilog)	form.	With	the	synthesizable	RTL,	the	customer	has	the	ability	to	perform	architectural	level	optimisations	and	extensions.	This	allows	the	designer	to	achieve	exotic	design	goals	not	otherwise	possible
with	an	unmodified	netlist	(high	clock	speed,	very	low	power	consumption,	instruction	set	extensions,	etc.).	While	Arm	Holdings	does	not	grant	the	licensee	the	right	to	resell	the	ARM	architecture	itself,	licensees	may	freely	sell	manufactured	products	such	as	chip	devices,	evaluation	boards	and	complete	systems.	Merchant	foundries	can	be	a	special
case;	not	only	are	they	allowed	to	sell	finished	silicon	containing	ARM	cores,	they	generally	hold	the	right	to	re-manufacture	ARM	cores	for	other	customers.	Arm	Holdings	prices	its	IP	based	on	perceived	value.	Lower	performing	ARM	cores	typically	have	lower	licence	costs	than	higher	performing	cores.	In	implementation	terms,	a	synthesisable	core
costs	more	than	a	hard	macro	(blackbox)	core.	Complicating	price	matters,	a	merchant	foundry	that	holds	an	ARM	licence,	such	as	Samsung	or	Fujitsu,	can	offer	fab	customers	reduced	licensing	costs.	In	exchange	for	acquiring	the	ARM	core	through	the	foundry's	in-house	design	services,	the	customer	can	reduce	or	eliminate	payment	of	ARM's
upfront	licence	fee.	Compared	to	dedicated	semiconductor	foundries	(such	as	TSMC	and	UMC)	without	in-house	design	services,	Fujitsu/Samsung	charge	two-	to	three-times	more	per	manufactured	wafer.[citation	needed]	For	low	to	mid	volume	applications,	a	design	service	foundry	offers	lower	overall	pricing	(through	subsidisation	of	the	licence
fee).	For	high	volume	mass-produced	parts,	the	long	term	cost	reduction	achievable	through	lower	wafer	pricing	reduces	the	impact	of	ARM's	NRE	(non-recurring	engineering)	costs,	making	the	dedicated	foundry	a	better	choice.	Companies	that	have	developed	chips	with	cores	designed	by	Arm	include	Amazon.com's	Annapurna	Labs	subsidiary,[59]
Analog	Devices,	Apple,	AppliedMicro	(now:	MACOM	Technology	Solutions[60]),	Atmel,	Broadcom,	Cavium,	Cypress	Semiconductor,	Freescale	Semiconductor	(now	NXP	Semiconductors),	Huawei,	Intel,[dubious	–	discuss]	Maxim	Integrated,	Nvidia,	NXP,	Qualcomm,	Renesas,	Samsung	Electronics,	ST	Microelectronics,	Texas	Instruments,	and	Xilinx.	In
February	2016,	ARM	announced	the	Built	on	ARM	Cortex	Technology	licence,	often	shortened	to	Built	on	Cortex	(BoC)	licence.	This	licence	allows	companies	to	partner	with	ARM	and	make	modifications	to	ARM	Cortex	designs.	These	design	modifications	will	not	be	shared	with	other	companies.	These	semi-custom	core	designs	also	have	brand
freedom,	for	example	Kryo	280.	Companies	that	are	current	licensees	of	Built	on	ARM	Cortex	Technology	include	Qualcomm.[61]	Companies	can	also	obtain	an	ARM	architectural	licence	for	designing	their	own	CPU	cores	using	the	ARM	instruction	sets.	These	cores	must	comply	fully	with	the	ARM	architecture.	Companies	that	have	designed	cores
that	implement	an	ARM	architecture	include	Apple,	AppliedMicro	(now:	Ampere	Computing),	Broadcom,	Cavium	(now:	Marvell),	Digital	Equipment	Corporation,	Intel,	Nvidia,	Qualcomm,	Samsung	Electronics,	Fujitsu,	and	NUVIA	Inc.	(acquired	by	Qualcomm	in	2021).	On	16	July	2019,	ARM	announced	ARM	Flexible	Access.	ARM	Flexible	Access
provides	unlimited	access	to	included	ARM	intellectual	property	(IP)	for	development.	Per	product	licence	fees	are	required	once	a	customer	reaches	foundry	tapeout	or	prototyping.[62][63]	75%	of	ARM's	most	recent	IP	over	the	last	two	years	are	included	in	ARM	Flexible	Access.	As	of	October	2019:	CPUs:	Cortex-A5,	Cortex-A7,	Cortex-A32,	Cortex-
A34,	Cortex-A35,	Cortex-A53,	Cortex-R5,	Cortex-R8,	Cortex-R52,	Cortex-M0,	Cortex-M0+,	Cortex-M3,	Cortex-M4,	Cortex-M7,	Cortex-M23,	Cortex-M33	GPUs:	Mali-G52,	Mali-G31.	Includes	Mali	Driver	Development	Kits	(DDK).	Interconnect:	CoreLink	NIC-400,	CoreLink	NIC-450,	CoreLink	CCI-400,	CoreLink	CCI-500,	CoreLink	CCI-550,	ADB-400
AMBA,	XHB-400	AXI-AHB	System	Controllers:	CoreLink	GIC-400,	CoreLink	GIC-500,	PL192	VIC,	BP141	TrustZone	Memory	Wrapper,	CoreLink	TZC-400,	CoreLink	L2C-310,	CoreLink	MMU-500,	BP140	Memory	Interface	Security	IP:	CryptoCell-312,	CryptoCell-712,	TrustZone	True	Random	Number	Generator	Peripheral	Controllers:	PL011	UART,
PL022	SPI,	PL031	RTC	Debug	&	Trace:	CoreSight	SoC-400,	CoreSight	SDC-600,	CoreSight	STM-500,	CoreSight	System	Trace	Macrocell,	CoreSight	Trace	Memory	Controller	Design	Kits:	Corstone-101,	Corstone-201	Physical	IP:	Artisan	PIK	for	Cortex-M33	TSMC	22ULL	including	memory	compilers,	logic	libraries,	GPIOs	and	documentation	Tools	&
Materials:	Socrates	IP	ToolingARM	Design	Studio,	Virtual	System	Models	Support:	Standard	ARM	Technical	support,	ARM	online	training,	maintenance	updates,	credits	toward	onsite	training	and	design	reviews	Main	article:	List	of	ARM	processors	Architecture	Corebit-width	Cores	Profile	Refe-rences	Arm	Ltd.	Third-party	ARMv1	32	ARM1	Classic	[a
1]	ARMv2	32	ARM2,	ARM250,	ARM3	Amber,	STORM	Open	Soft	Core[64]	Classic	[a	1]	ARMv3	32	ARM6,	ARM7	Classic	[a	2]	ARMv4	32	ARM8	StrongARM,	FA526,	ZAP	Open	Source	Processor	Core	Classic	[a	2]	[65]	ARMv4T	32	ARM7TDMI,	ARM9TDMI,	SecurCore	SC100	Classic	[a	2]	ARMv5TE	32	ARM7EJ,	ARM9E,	ARM10E	XScale,	FA626TE,
Feroceon,	PJ1/Mohawk	Classic	ARMv6	32	ARM11	Classic	ARMv6-M	32	ARM	Cortex-M0,	ARM	Cortex-M0+,	ARM	Cortex-M1,	SecurCore	SC000	Microcontroller	ARMv7-M	32	ARM	Cortex-M3,	SecurCore	SC300	Apple	M7	motion	coprocessor	Microcontroller	ARMv7E-M	32	ARM	Cortex-M4,	ARM	Cortex-M7	Microcontroller	ARMv8-M	32	ARM	Cortex-
M23,[66]	ARM	Cortex-M33[67]	Microcontroller	[68]	ARMv8.1-M	32	ARM	Cortex-M55,	ARM	Cortex-M85	Microcontroller	[69]	ARMv7-R	32	ARM	Cortex-R4,	ARM	Cortex-R5,	ARM	Cortex-R7,	ARM	Cortex-R8	Real-time	ARMv8-R	32	ARM	Cortex-R52	Real-time	[70][71][72]	64	ARM	Cortex-R82	Real-time	ARMv7-A	32	ARM	Cortex-A5,	ARM	Cortex-A7,	ARM
Cortex-A8,	ARM	Cortex-A9,	ARM	Cortex-A12,	ARM	Cortex-A15,	ARM	Cortex-A17	Qualcomm	Scorpion/Krait,	PJ4/Sheeva,	Apple	Swift	(A6,	A6X)	Application	ARMv8-A	32	ARM	Cortex-A32[73]	Application	64/32	ARM	Cortex-A35,[74]	ARM	Cortex-A53,	ARM	Cortex-A57,[75]	ARM	Cortex-A72,[76]	ARM	Cortex-A73[77]	X-Gene,	Nvidia	Denver	1/2,	Cavium
ThunderX,	AMD	K12,	Apple	Cyclone	(A7)/Typhoon	(A8,	A8X)/Twister	(A9,	A9X)/Hurricane+Zephyr	(A10,	A10X),	Qualcomm	Kryo,	Samsung	M1/M2	("Mongoose")	/M3	("Meerkat")	Application	[78][1][79][80][81][82]	64	ARM	Cortex-A34[83]	Application	ARMv8.1-A	64/32	Cavium	ThunderX2	Application	[84]	ARMv8.2-A	64/32	ARM	Cortex-A55,[85]	ARM
Cortex-A75,[86]	ARM	Cortex-A76,[87]	ARM	Cortex-A77,	ARM	Cortex-A78,	ARM	Cortex-X1,	ARM	Neoverse	N1	Nvidia	Carmel,	Samsung	M4	("Cheetah"),	Fujitsu	A64FX	(ARMv8	SVE	512-bit)	Application	[88][89][90]	64	ARM	Cortex-A65,	ARM	Neoverse	E1	with	simultaneous	multithreading	(SMT),	ARM	Cortex-A65AE[91]	(also	having	e.g.	ARMv8.4	Dot
Product;	made	for	safety	critical	tasks	such	as	advanced	driver-assistance	systems	(ADAS))	Apple	Monsoon+Mistral	(A11)	(September	2017)	Application	ARMv8.3-A	64/32	Application	64	Apple	Vortex+Tempest	(A12,	A12X,	A12Z),	Marvell	ThunderX3	(v8.3+)[92]	Application	ARMv8.4-A	64/32	Application	64	ARM	Neoverse	V1	Apple	Lightning+Thunder
(A13),	Apple	Firestorm+Icestorm	(A14,	M1)	Application	ARMv8.5-A	64/32	Application	64	Application	ARMv8.6-A	64	Apple	Avalanche+Blizzard	(A15,	M2),	Apple	Everest+Sawtooth	(A16),[93]	Apple	Coll	(A17),	Apple	Ibiza/Lobos/Palma	(M3)	Application	ARMv8.7-A	64	Application	[94]	ARMv8.8-A	64	Application	ARMv8.9-A	64	Application	ARMv9.0-A	64
ARM	Cortex-A510,	ARM	Cortex-A710,	ARM	Cortex-A715,	ARM	Cortex-X2,	ARM	Cortex-X3,	ARM	Neoverse	E2,	ARM	Neoverse	N2,	ARM	Neoverse	V2	Application	[95][96]	ARMv9.1-A	64	Application	ARMv9.2-A	64	ARM	Cortex-A520,	ARM	Cortex-A720,	ARM	Cortex-X4,	ARM	Neoverse	V3,[97]	ARM	Cortex-X925,[98]	ARM	Cortex-A320[99]	Apple
Donan/BravaChop/Brava	(Apple	M4),[100]	Apple	Tupai/Tahiti	(A18)	Application	ARMv9.3-A	64	TBA	Application	[101]	ARMv9.4-A	64	TBA	Application	[102]	ARMv9.5-A	64	TBA	Application	[103]	ARMv9.6-A	64	TBA	Application	[104]	^	a	b	Although	most	datapaths	and	CPU	registers	in	the	early	ARM	processors	were	32-bit,	addressable	memory	was
limited	to	26	bits;	with	upper	bits,	then,	used	for	status	flags	in	the	program	counter	register.	^	a	b	c	ARMv3	included	a	compatibility	mode	to	support	the	26-bit	addresses	of	earlier	versions	of	the	architecture.	This	compatibility	mode	optional	in	ARMv4,	and	removed	entirely	in	ARMv5.	Arm	provides	a	list	of	vendors	who	implement	ARM	cores	in
their	design	(application	specific	standard	products	(ASSP),	microprocessor	and	microcontrollers).[105]	Tronsmart	MK908,	a	Rockchip-based	quad-core	Android	"mini	PC",	with	a	microSD	card	next	to	it	for	a	size	comparison	Main	article:	List	of	products	using	ARM	processors	ARM	cores	are	used	in	a	number	of	products,	particularly	PDAs	and
smartphones.	Some	computing	examples	are	Microsoft's	first	generation	Surface,	Surface	2	and	Pocket	PC	devices	(following	2002),	Apple's	iPads,	and	Asus's	Eee	Pad	Transformer	tablet	computers,	and	several	Chromebook	laptops.	Others	include	Apple's	iPhone	smartphones	and	iPod	portable	media	players,	Canon	PowerShot	digital	cameras,
Nintendo	Switch	hybrid,	the	Wii	security	processor	and	3DS	handheld	game	consoles,	and	TomTom	turn-by-turn	navigation	systems.	In	2005,	Arm	took	part	in	the	development	of	Manchester	University's	computer	SpiNNaker,	which	used	ARM	cores	to	simulate	the	human	brain.[106]	ARM	chips	are	also	used	in	Raspberry	Pi,	BeagleBoard,
BeagleBone,	PandaBoard,	and	other	single-board	computers,	because	they	are	very	small,	inexpensive,	and	consume	very	little	power.	An	ARMv7	was	used	to	power	older	versions	of	the	popular	Raspberry	Pi	single-board	computers	like	this	Raspberry	Pi	2	from	2015.	An	ARMv7	is	also	used	to	power	the	CuBox	family	of	single-board	computers.	See
also:	Comparison	of	ARMv7-A	processors	The	32-bit	ARM	architecture	(ARM32),	such	as	ARMv7-A	(implementing	AArch32;	see	section	on	Armv8-A	for	more	on	it),	was	the	most	widely	used	architecture	in	mobile	devices	as	of	2011[update].[55]	Since	1995,	various	versions	of	the	ARM	Architecture	Reference	Manual	(see	§	External	links)	have	been
the	primary	source	of	documentation	on	the	ARM	processor	architecture	and	instruction	set,	distinguishing	interfaces	that	all	ARM	processors	are	required	to	support	(such	as	instruction	semantics)	from	implementation	details	that	may	vary.	The	architecture	has	evolved	over	time,	and	version	seven	of	the	architecture,	ARMv7,	defines	three
architecture	"profiles":	A-profile,	the	"Application"	profile,	implemented	by	32-bit	cores	in	the	Cortex-A	series	and	by	some	non-ARM	cores	R-profile,	the	"Real-time"	profile,	implemented	by	cores	in	the	Cortex-R	series	M-profile,	the	"Microcontroller"	profile,	implemented	by	most	cores	in	the	Cortex-M	series	Although	the	architecture	profiles	were
first	defined	for	ARMv7,	ARM	subsequently	defined	the	ARMv6-M	architecture	(used	by	the	Cortex	M0/M0+/M1)	as	a	subset	of	the	ARMv7-M	profile	with	fewer	instructions.	Except	in	the	M-profile,	the	32-bit	ARM	architecture	specifies	several	CPU	modes,	depending	on	the	implemented	architecture	features.	At	any	moment	in	time,	the	CPU	can	be
in	only	one	mode,	but	it	can	switch	modes	due	to	external	events	(interrupts)	or	programmatically.[107]	User	mode:	The	only	non-privileged	mode.	FIQ	mode:	A	privileged	mode	that	is	entered	whenever	the	processor	accepts	a	fast	interrupt	request.	IRQ	mode:	A	privileged	mode	that	is	entered	whenever	the	processor	accepts	an	interrupt.	Supervisor
(svc)	mode:	A	privileged	mode	entered	whenever	the	CPU	is	reset	or	when	an	SVC	instruction	is	executed.	Abort	mode:	A	privileged	mode	that	is	entered	whenever	a	prefetch	abort	or	data	abort	exception	occurs.	Undefined	mode:	A	privileged	mode	that	is	entered	whenever	an	undefined	instruction	exception	occurs.	System	mode	(ARMv4	and
above):	The	only	privileged	mode	that	is	not	entered	by	an	exception.	It	can	only	be	entered	by	executing	an	instruction	that	explicitly	writes	to	the	mode	bits	of	the	Current	Program	Status	Register	(CPSR)	from	another	privileged	mode	(not	from	user	mode).	Monitor	mode	(ARMv6	and	ARMv7	Security	Extensions,	ARMv8	EL3):	A	monitor	mode	is
introduced	to	support	TrustZone	extension	in	ARM	cores.	Hyp	mode	(ARMv7	Virtualization	Extensions,	ARMv8	EL2):	A	hypervisor	mode	that	supports	Popek	and	Goldberg	virtualization	requirements	for	the	non-secure	operation	of	the	CPU.[108][109]	Thread	mode	(ARMv6-M,	ARMv7-M,	ARMv8-M):	A	mode	which	can	be	specified	as	either	privileged
or	unprivileged.	Whether	the	Main	Stack	Pointer	(MSP)	or	Process	Stack	Pointer	(PSP)	is	used	can	also	be	specified	in	CONTROL	register	with	privileged	access.	This	mode	is	designed	for	user	tasks	in	RTOS	environment	but	it	is	typically	used	in	bare-metal	for	super-loop.	Handler	mode	(ARMv6-M,	ARMv7-M,	ARMv8-M):	A	mode	dedicated	for
exception	handling	(except	the	RESET	which	are	handled	in	Thread	mode).	Handler	mode	always	uses	MSP	and	works	in	privileged	level.	The	original	(and	subsequent)	ARM	implementation	was	hardwired	without	microcode,	like	the	much	simpler	8-bit	6502	processor	used	in	prior	Acorn	microcomputers.	The	32-bit	ARM	architecture	(and	the	64-bit
architecture	for	the	most	part)	includes	the	following	RISC	features:	Load–store	architecture.	No	support	for	unaligned	memory	accesses	in	the	original	version	of	the	architecture.	ARMv6	and	later,	except	some	microcontroller	versions,	support	unaligned	accesses	for	half-word	and	single-word	load/store	instructions	with	some	limitations,	such	as	no
guaranteed	atomicity.[110][111]	Uniform	16	×	32-bit	register	file	(including	the	program	counter,	stack	pointer	and	the	link	register).	Fixed	instruction	width	of	32	bits	to	ease	decoding	and	pipelining,	at	the	cost	of	decreased	code	density.	Later,	the	Thumb	instruction	set	added	16-bit	instructions	and	increased	code	density.	Mostly	single	clock-cycle
execution.	To	compensate	for	the	simpler	design,	compared	with	processors	like	the	Intel	80286	and	Motorola	68020,	some	additional	design	features	were	used:	Conditional	execution	of	most	instructions	reduces	branch	overhead	and	compensates	for	the	lack	of	a	branch	predictor	in	early	chips.	Arithmetic	instructions	alter	condition	codes	only
when	desired.	32-bit	barrel	shifter	can	be	used	without	performance	penalty	with	most	arithmetic	instructions	and	address	calculations.	Has	powerful	indexed	addressing	modes.	A	link	register	supports	fast	leaf	function	calls.	A	simple,	but	fast,	2-priority-level	interrupt	subsystem	has	switched	register	banks.	ARM	includes	integer	arithmetic
operations	for	add,	subtract,	and	multiply;	some	versions	of	the	architecture	also	support	divide	operations.	ARM	supports	32-bit	×	32-bit	multiplies	with	either	a	32-bit	result	or	64-bit	result,	though	Cortex-M0	/	M0+	/	M1	cores	do	not	support	64-bit	results.[112]	Some	ARM	cores	also	support	16-bit	×	16-bit	and	32-bit	×	16-bit	multiplies.	The	divide
instructions	are	only	included	in	the	following	ARM	architectures:	Armv7-M	and	Armv7E-M	architectures	always	include	divide	instructions.[113]	Armv7-R	architecture	always	includes	divide	instructions	in	the	Thumb	instruction	set,	but	optionally	in	its	32-bit	instruction	set.[114]	Armv7-A	architecture	optionally	includes	the	divide	instructions.	The
instructions	might	not	be	implemented,	or	implemented	only	in	the	Thumb	instruction	set,	or	implemented	in	both	the	Thumb	and	ARM	instruction	sets,	or	implemented	if	the	Virtualization	Extensions	are	included.[114]	Registers	across	CPU	modes	usr	sys	svc	abt	und	irq	fiq	R0	R1	R2	R3	R4	R5	R6	R7	R8	R8_fiq	R9	R9_fiq	R10	R10_fiq	R11	R11_fiq	R12
R12_fiq	R13	R13_svc	R13_abt	R13_und	R13_irq	R13_fiq	R14	R14_svc	R14_abt	R14_und	R14_irq	R14_fiq	R15	CPSR	SPSR_svc	SPSR_abt	SPSR_und	SPSR_irq	SPSR_fiq	Registers	R0	through	R7	are	the	same	across	all	CPU	modes;	they	are	never	banked.	Registers	R8	through	R12	are	the	same	across	all	CPU	modes	except	FIQ	mode.	FIQ	mode	has	its
own	distinct	R8	through	R12	registers.	R13	and	R14	are	banked	across	all	privileged	CPU	modes	except	system	mode.	That	is,	each	mode	that	can	be	entered	because	of	an	exception	has	its	own	R13	and	R14.	These	registers	generally	contain	the	stack	pointer	and	the	return	address	from	function	calls,	respectively.	Aliases:	R13	is	also	referred	to	as
SP,	the	stack	pointer.	R14	is	also	referred	to	as	LR,	the	link	register.	R15	is	also	referred	to	as	PC,	the	program	counter.	The	Current	Program	Status	Register	(CPSR)	has	the	following	32	bits.[115]	M	(bits	0–4)	is	the	processor	mode	bits.	T	(bit	5)	is	the	Thumb	state	bit.	F	(bit	6)	is	the	FIQ	disable	bit.	I	(bit	7)	is	the	IRQ	disable	bit.	A	(bit	8)	is	the
imprecise	data	abort	disable	bit.	E	(bit	9)	is	the	data	endianness	bit.	IT	(bits	10–15	and	25–26)	is	the	if-then	state	bits.	GE	(bits	16–19)	is	the	greater-than-or-equal-to	bits.	DNM	(bits	20–23)	is	the	do	not	modify	bits.	J	(bit	24)	is	the	Java	state	bit.	Q	(bit	27)	is	the	sticky	overflow	bit.	V	(bit	28)	is	the	overflow	bit.	C	(bit	29)	is	the	carry/borrow/extend	bit.	Z
(bit	30)	is	the	zero	bit.	N	(bit	31)	is	the	negative/less	than	bit.	Almost	every	ARM	instruction	has	a	conditional	execution	feature	called	predication,	which	is	implemented	with	a	4-bit	condition	code	selector	(the	predicate).	To	allow	for	unconditional	execution,	one	of	the	four-bit	codes	causes	the	instruction	to	be	always	executed.	Most	other	CPU
architectures	only	have	condition	codes	on	branch	instructions.[116]	Though	the	predicate	takes	up	four	of	the	32	bits	in	an	instruction	code,	and	thus	cuts	down	significantly	on	the	encoding	bits	available	for	displacements	in	memory	access	instructions,	it	avoids	branch	instructions	when	generating	code	for	small	if	statements.	Apart	from
eliminating	the	branch	instructions	themselves,	this	preserves	the	fetch/decode/execute	pipeline	at	the	cost	of	only	one	cycle	per	skipped	instruction.	An	algorithm	that	provides	a	good	example	of	conditional	execution	is	the	subtraction-based	Euclidean	algorithm	for	computing	the	greatest	common	divisor.	In	the	C	programming	language,	the
algorithm	can	be	written	as:	int	gcd(int	a,	int	b)	{	while	(a	!=	b)	//	We	enter	the	loop	when	a	<	b	or	a	>	b,	but	not	when	a	==	b	if	(a	>	b)	//	When	a	>	b	we	do	this	a	-=	b;	else	//	When	a	<	b	we	do	that	(no	"if	(a	<	b)"	needed	since	a	!=	b	is	checked	in	while	condition)	b	-=	a;	return	a;	}	The	same	algorithm	can	be	rewritten	in	a	way	closer	to	target	ARM
instructions	as:	loop:	//	Compare	a	and	b	GT	=	a	>	b;	LT	=	a	<	b;	NE	=	a	!=	b;	//	Perform	operations	based	on	flag	results	if	(GT)	a	-=	b;	//	Subtract	*only*	if	greater-than	if	(LT)	b	-=	a;	//	Subtract	*only*	if	less-than	if	(NE)	goto	loop;	//	Loop	*only*	if	compared	values	were	not	equal	return	a;	and	coded	in	assembly	language	as:	;	assign	a	to	register	r0,	b
to	r1	loop:	CMP	r0,	r1	;	set	condition	"NE"	if	(a	≠	b),	;	"GT"	if	(a	>	b),	;	or	"LT"	if	(a	<	b)	SUBGT	r0,	r0,	r1	;	if	"GT"	(Greater	Than),	then	a	=	a	−	b	SUBLT	r1,	r1,	r0	;	if	"LT"	(Less	Than),	then	b	=	b	−	a	BNE	loop	;	if	"NE"	(Not	Equal),	then	loop	B	lr	;	return	which	avoids	the	branches	around	the	then	and	else	clauses.	If	r0	and	r1	are	equal	then	neither	of
the	SUB	instructions	will	be	executed,	eliminating	the	need	for	a	conditional	branch	to	implement	the	while	check	at	the	top	of	the	loop,	for	example	had	SUBLE	(less	than	or	equal)	been	used.	One	of	the	ways	that	Thumb	code	provides	a	more	dense	encoding	is	to	remove	the	four-bit	selector	from	non-branch	instructions.	Another	feature	of	the
instruction	set	is	the	ability	to	fold	shifts	and	rotates	into	the	data	processing	(arithmetic,	logical,	and	register-register	move)	instructions,	so	that,	for	example,	the	statement	in	C	language:	a	+=	(j

