
	

https://mebusulezo.maxudijuz.com/247609307220705670662888555306178202944532?vosufopotamudovinasodofopawosisefojopita=jugotewuvalirujilopibotipuxefobekupoxekosesineguwujizixigabuboxofogeribubaxugipamupinisixeroxikowukitejusufapatogovekezidefixojinamigitawitubotomemisurexibewowizurozagiruserujabozijewiwidotepigonuroxola&utm_term=terraform+aws+bastion+host+example&kezagoxilimumewolufopasifinemetepizekasaradonadogunigunumuwotonolijupejixefazakejabunogixugiroxowezo=tivatodidetukaxixeranatolagutagunagefafugaxipakuwesodirominijujemunazuxofesufapivuzolisifapedepetonukokusibomalezazogamujasevidofebuneperazizitogi

Photo	by	Author	Irfan	DanishIn	my	previous	article	Building	a	Secure	AWS	VPC	with	Terraform:	Subnets,	Internet	Gateways,	and	More	Part-I	and	Part-II	,	we	explored	the	process	of	provisioning	a	secure	Virtual	Private	Cloud	(VPC)	infrastructure	on	AWS.	We	discussed	various	components	like	subnets,	security	groups,	and	network	ACLs	to	ensure	a
robust	and	protected	environment.	Building	upon	that	foundation,	today	we	will	delve	into	the	concept	of	an	EC2	bastion	host.In	todays	interconnected	world,	ensuring	the	security	of	our	cloud	infrastructure	is	paramount.	As	organizations	increasingly	adopt	cloud	technologies,	it	becomes	crucial	to	implement	robust	security	measures	to	safeguard
sensitive	data	and	systems.	One	such	security	measure	is	the	use	of	an	bastion	host	an	essential	component	of	a	secure	infrastructure	setup.	In	this	article,	we	will	explore	the	concept	of	an	EC2	bastion	host,	its	significance,	the	benefits	it	offers	in	enhancing	security	within	your	AWS	environment	and	walk	through	the	step-by-step	process	of	setting	it
up.	So,	if	youre	ready	to	strengthen	the	security	of	your	infrastructure	and	manage	your	resources	more	effectively,	lets	dive	into	the	world	of	EC2	bastion	hosts.Demystifying	the	Bastion	Host:A	bastion	host,	also	known	as	a	jump	box	or	a	jump	server,	acts	as	a	fortified	gateway	between	external	networks	(e.g.,	the	internet)	and	internal	private
networks	(private	subnets).	While	this	isolation	adds	an	extra	layer	of	security,	it	can	pose	challenges	when	administrators	or	developers	require	remote	access	for	maintenance,	debugging,	or	troubleshooting	purposes.	This	is	where	a	bastion	host	comes	into	play,	it	serves	as	a	secure	and	controlled	access	point,	allowing	authorized	users	to	connect
to	resources	within	the	private	network	from	remote	locations.	By	acting	as	a	single	entry	point,	the	bastion	host	minimizes	the	exposure	of	your	internal	network,	reducing	the	attack	surface	and	strengthening	the	overall	security	posture.Benefits	of	Using	an	EC2	Bastion	Host:Enhanced	Security:	The	bastion	host	acts	as	a	gatekeeper,	granting	access
to	specific	users	or	IP	addresses	while	enforcing	strong	authentication	and	secure	protocols.	It	helps	protect	your	private	instances	from	direct	exposure	to	the	internet,	reducing	the	risk	of	unauthorized	access	and	potential	security	breaches.Centralized	Access	Control:	With	an	EC2	bastion	host	in	place,	you	can	enforce	fine-grained	access	control
policies,	limiting	the	number	of	users	who	have	direct	access	to	the	private	instances.	This	centralized	approach	ensures	better	governance	and	auditing	capabilities,	making	it	easier	to	track	and	monitor	access	to	critical	resources.Simplified	Networking:	By	utilizing	an	EC2	bastion	host,	you	can	streamline	your	network	architecture.	Rather	than
exposing	multiple	instances	to	the	public	internet,	you	consolidate	remote	access	through	a	single	entry	point,	reducing	the	complexity	of	managing	and	securing	multiple	access	points.Monitoring	and	Auditing:	An	EC2	bastion	host	provides	a	centralized	location	to	collect	logs,	monitor	user	activity,	and	track	SSH	sessions.	This	facilitates	better
visibility	into	who	is	accessing	your	resources	and	enables	auditing	capabilities	to	meet	compliance	requirements.To	continue	our	journey	towards	building	a	secure	and	well-managed	AWS	infrastructure	using	Terraform,	we	will	now	focus	on	provisioning	an	EC2	bastion	host.	As	a	prerequisite,	we	will	be	utilizing	the	VPC	infrastructure	that	we	have
set	up	in	our	previous	article,	Building	a	Secure	AWS	VPC	with	Terraform:	Subnets,	Internet	Gateways,	and	More	Part	II.	In	case	you	missed	it,	we	highly	recommend	giving	it	a	read	as	it	lays	the	groundwork	for	the	bastion	host	setup.All	of	the	code	for	this	article	can	be	found	on	my	GitHub	Terraform	RepositoryVariables	for	EC2	Bastion	Host#	EC2
Bastion	Host	variablesvariable	"ec2-bastion-public-key-path"	{	type	=	string}variable	"ec2-bastion-private-key-path"	{	type	=	string}variable	"ec2-bastion-ingress-ip-1"	{	type	=	string}2.	terraform.tfvars	file.##	EC2	Bastion	Host	Variablesec2-bastion-public-key-path	=	"../secrets/ec2-bastion-key-pair.pub"ec2-bastion-private-key-path	=	"../secrets/ec2-
bastion-key-pair.pem"ec2-bastion-ingress-ip-1	=	"0.0.0.0/0"Photo	by	Markus	Spiske	on	UnsplashCaution!	In	the	terraform.tfvars	file	we	have	temporarily	setup	the	value	of	ec2-bastion-ingress-ip-1	(incoming	traffic	range)	to	0.0.0.0/0	for	demonstration	purposes.	This	configuration	allows	unrestricted	access	to	the	EC2	bastion	host	from	the	public
internet	using	your	SSH	key.	However,	its	important	to	note	that	this	approach	is	highly	insecure.	In	a	real-world	scenario,	it	is	strongly	recommended	to	restrict	incoming	traffic	only	to	trusted	sources,	such	as	your	organizations	VPN	or	the	CIDR	range	of	your	organizations	network.	By	implementing	these	restrictions,	you	ensure	a	much	higher
level	of	security	for	your	EC2	bastion	host	and	protect	it	from	unauthorized	access.Generating	SSH	Key	Pair:Our	next	step	is	to	generate	SSH	Key	pair	for	our	EC2	Bastion	host	and	create	AWS	SSH	Key	Pair	resource	as	well.	There	are	two	ways	you	can	create	and	manage	SSH	Key	Pair	for	EC2	Bastion	Host,	we	demonstrate	both:Using	Terraform
tls_private_key	resource:##	Generate	PEM	(and	OpenSSH)	formatted	private	key.resource	"tls_private_key"	"ec2-bastion-host-key-pair"	{	algorithm	=	"RSA"	rsa_bits	=	4096}##	Create	the	file	for	Public	Keyresource	"local_file"	"ec2-bastion-host-public-key"	{	depends_on	=	[tls_private_key.ec2-bastion-host-key-pair]	content	=	tls_private_key.ec2-
bastion-host-key-pair.public_key_openssh	filename	=	var.ec2-bastion-public-key-path}##	Create	the	sensitive	file	for	Private	Keyresource	"local_sensitive_file"	"ec2-bastion-host-private-key"	{	depends_on	=	[tls_private_key.ec2-bastion-host-key-pair]	content	=	tls_private_key.ec2-bastion-host-key-pair.private_key_pem	filename	=	var.ec2-bastion-
private-key-path	file_permission	=	"0600"}##	AWS	SSH	Key	Pairresource	"aws_key_pair"	"ec2-bastion-host-key-pair"	{	depends_on	=	[local_file.ec2-bastion-host-public-key]	key_name	=	"${var.project}-ec2-bastion-host-key-pair-${var.environment}"	public_key	=	tls_private_key.ec2-bastion-host-key-pair.public_key_openssh}Terraform	provides	the
tls_private_key	resource,	which	allows	you	to	generate	an	SSH	key	pair	within	your	Terraform	configuration.	This	option	is	convenient	if	you	prefer	managing	the	key	generation	process	directly	in	your	Terraform	code.	You	can	define	the	key	pair	parameters,	such	as	the	algorithm,	length,	and	format,	within	the	resource	block.You	can	see	from	above
code	snippet	we	are	using	tls_private_key	resource	to	generate	the	SSH	private	and	public	keys,	and	then	we	use	local_file	and	local_sensitive_file	resources	to	store	and	manage	the	generated	private	key	securely.	The	local_file	resource	allows	you	to	save	the	private	key	to	a	local	file	on	your	machine,	which	can	be	useful	for	accessing	it	outside	of
Terraform.	However,	since	the	private	key	contains	sensitive	information,	such	as	authentication	credentials,	it's	crucial	to	protect	it.	Here,	the	local_sensitive_file	resource	comes	into	play	by	encrypting	the	private	key	and	storing	it	securely.By	using	both	local_file	and	local_sensitive_file	resources,	you	can	ensure	that	the	private	key	is	safely	stored
and	easily	accessible	when	needed,	striking	a	balance	between	convenience	and	security	in	managing	your	SSH	key	pair.First	we	need	to	create	the	SSH	Key	Pair	using	following	command:ssh-keygen	-t	rsa	-C	"you.email@example.com"	-b	4096It	will	prompt	you	to	enter	the	complete	path	to	the	file	in	which	to	save	the	key	enter	the	path	e.g	path-to-
repo/terraform-iac/aws/infrastructure/secrets/ec2-bastion-key-pair.	Then	it	will	ask	for	password	enter	a	secure	password	for	key.	Then	change	the	permissions	of	the	SSH	private	key	so	that	only	your	user	can	access	the	key	by	running	the	following	command:chmod	600	path-to-repo/terraform-iac/aws/infrastructure/secrets/ec2-bastion-key-pairOnce
the	SSH	Key	Pair	is	generated	we	will	write	our	AWS	Key	Pair	resource	as	follows:##	AWS	SSH	Key	Pairresource	"aws_key_pair"	"ec2-bastion-host-key-pair"	{	key_name	=	"${var.project}-ec2-bastion-host-key-pair-${var.environment}"	public_key	=	file(var.ec2-bastion-public-key-path)}Networking	(Security	Group	&	Elastic	IP):Now	we	will	create	a
Security	Group	to	control	the	inbound	and	outbound	traffic	for	EC2	bastion	host	instance:resource	"aws_security_group"	"ec2-bastion-sg"	{	description	=	"EC2	Bastion	Host	Security	Group"	name	=	"${var.project}-ec2-bastion-sg-${var.environment}"	vpc_id	=	aws_vpc.kodetronix-vpc.id	ingress	{	from_port	=	22	to_port	=	22	protocol	=	"tcp"
cidr_blocks	=	[var.ec2-bastion-ingress-ip-1]	description	=	"Open	to	Public	Internet"	}	egress	{	from_port	=	0	to_port	=	0	protocol	=	"-1"	ipv6_cidr_blocks	=	["::/0"]	description	=	"IPv6	route	Open	to	Public	Internet"	}	egress	{	from_port	=	0	to_port	=	0	protocol	=	"-1"	cidr_blocks	=	["0.0.0.0/0"]	description	=	"IPv4	route	Open	to	Public	Internet"	}}In
the	above	terraform	resource	block	we	create	a	security	group	in	our	VPC	(that	we	have	created	in	our	previous	article).	For	ingress	traffic,	the	security	group	allows	TCP	traffic	on	port	22	(SSH)	from	a	specific	IP	address	defined	by	the	variable	var.ec2-bastion-ingress-ip-1,	you	can	also	add	multiple	IP	addresses	as	well.	This	configuration	allows	SSH
access	to	the	EC2	bastion	host	from	the	specified	IP	address,	typically	used	for	secure	remote	administration.Regarding	egress	traffic,	the	security	group	allows	all	traffic	(protocol	-1)	to	be	sent	out	to	the	public	internet.	This	includes	both	IPv4	(cidr_blocks	=	["0.0.0.0/0"])	and	IPv6	(ipv6_cidr_blocks	=	["::/0"])	traffic.	These	rules	ensure	that	the	EC2
bastion	host	can	communicate	with	external	resources	if	necessary.Next	we	will	create	Elastic	IP	for	our	EC2	bastion	host.	Using	an	Elastic	IP	(EIP)	for	a	bastion	host	offers	several	benefits	and	is	considered	a	best	practice	in	secure	infrastructure	design.	By	associating	an	EIP	with	the	bastion	host,	you	ensure	that	its	public	IP	address	remains
consistent	even	if	the	instance	is	stopped,	restarted	or	replaced.	This	provides	stability	for	accessing	the	bastion	host,	as	you	can	rely	on	a	fixed	IP	address	instead	of	having	to	constantly	update	your	access	rules	or	DNS	records.##	EC2	Bastion	Host	Elastic	IPresource	"aws_eip"	"ec2-bastion-host-eip"	{	vpc	=	true	tags	=	{	Name	=	"${var.project}-
ec2-bastion-host-eip-${var.environment}"	}}EC2	Instance	&	Elastic	IP	Association:Finally	now	we	will	create	EC2	instance	that	we	will	be	using	as	bastion	host.resource	"aws_instance"	"ec2-bastion-host"	{	ami	=	"ami-0d76271a8a1525c1a"	instance_type	=	"t2.micro"	key_name	=	aws_key_pair.ec2-bastion-host-key-pair.key_name
vpc_security_group_ids	=	[aws_security_group.ec2-bastion-sg.id]	subnet_id	=	aws_subnet.vpc-public-subnet-2.id	associate_public_ip_address	=	false	user_data	=	file(var.bastion-bootstrap-script-path)	root_block_device	{	volume_size	=	8	delete_on_termination	=	true	volume_type	=	"gp2"	encrypted	=	true	tags	=	{	Name	=	"${var.project}-ec2-
bastion-host-root-volume-${var.environment}"	}	}	credit_specification	{	cpu_credits	=	"standard"	}	tags	=	{	Name	=	"${var.project}-ec2-bastion-host-${var.environment}"	}	lifecycle	{	ignore_changes	=	[associate_public_ip_address,]	}}The	provided	Terraform	code	snippet	represents	the	definition	of	an	AWS	EC2	instance	resource	named	ec2-
bastion-host	in	the	Terraform	configuration.	This	resource	is	responsible	for	provisioning	and	managing	an	EC2	bastion	host	within	the	specified	AWS	environment.The	EC2	instance	is	created	with	the	Amazon	Linux	Amazon	Machine	Image	(AMI)	using	the	ami	attribute	and	has	an	instance	type	of	t2.micro.	The	SSH	key	pair	for	authentication	is
specified	with	key_name	using	the	aws_key_pair.ec2-bastion-host-key-pair.key_name	reference	that	we	have	created	earlier.	The	EC2	instance	is	launched	in	the	specified	public	subnet	2,	to	ensure	it	resides	in	the	desired	network	segment.	The	option	associate_public_ip_address	is	set	to	false,	indicating	that	the	EC2	instance	won't	have	a	public	IP
address	associated	with	it.The	configuration	also	defines	the	root	block	device	attributes,	including	the	volume	size,	deletion	on	termination,	volume	type,	encryption,	and	associated	tags.	The	credit_specification	section	sets	the	CPU	credits	to	"standard"	for	the	instance.	Lastly,	the	lifecycle	block	is	included	to	ignore	changes	in	the
associate_public_ip_address	attribute	during	updates	to	prevent	unnecessary	modifications.To	access	our	EC2	bastion	host	now	we	are	going	to	associate	Elastic	IP	that	we	have	created	earlier	with	our	EC2	instance	using	following	terraform	resource	block:##	EC2	Bastion	Host	Elastic	IP	Associationresource	"aws_eip_association"	"ec2-bastion-host-
eip-association"	{	instance_id	=	aws_instance.ec2-bastion-host.id	allocation_id	=	aws_eip.ec2-bastion-host-eip.id}Now	we	are	ready	to	apply	the	infrastructure,	once	the	infrastructure	is	provisioned	you	can	use	you	private	key	and	the	public	IP	of	your	EIP	to	access	the	EC2	bastion	host	as	follows:ssh	-i	ec2-bastion-key-pair.pem	ec2-
user@Conclusion:In	conclusion,	an	EC2	Bastion	Host	is	an	important	component	of	a	secure	AWS	architecture	as	it	provides	a	secure	and	controlled	way	to	access	instances	within	a	private	subnet.	Provisioning	the	EC2	Bastion	Host	using	Terraform	allows	for	easy	management	of	infrastructure	as	code.	In	this	article,	we	went	through	the	process	of
provisioning	an	EC2	Bastion	Host	using	Terraform	and	also	highlighted	the	importance	of	using	best	practices,	such	as	limiting	incoming	traffic	and	using	an	Elastic	IP	address.	By	following	these	best	practices,	we	can	ensure	a	secure	and	manageable	infrastructure	that	is	easy	to	maintain	and	scale	as	required.	We	hope	this	article	has	provided
valuable	insights	into	the	EC2	Bastion	Host	and	how	to	provision	it	using	Terraform.	With	EC2	Bastion	Host	setup	in	our	next	article	RDS:	Deploying	Scalable	and	Resilient	Relational	Databases	Using	Terraform	IaC	you	can	check	how	to	deploy	a	relational	database	using	AWS	RDS.Recommended	Readings:Final	NoteIf	you	enjoyed	this	article	and
found	it	useful,	be	sure	to	follow	me	on	Medium	and	GitHub	for	more	content	like	this.	On	Medium,	you	can	find	more	articles	on	Cloud	Computing,	DevOps,	Machine	Learning	and	other	related	topics.	On	GitHub,	you	can	find	my	open-source	projects	and	code	samples.	By	following	me	on	these	platforms,	you	can	stay	up-to-date	with	my	latest	work
and	learn	more	about	best	practices	for	managing	infrastructure	with	Terraform	and	other	cloud	tools.	Thanks	for	reading!	You	cant	perform	that	action	at	this	time.	In	this	example	we'll	generate	a	ssh	key	pair	and	use	terraform	to	create	the	following	resources.	The	goal	is	to	be	able	to	ssh	to	a	bastion	host	and	run	a	terraform	provisioner	to	the
private	instance.NetworkVPCPublic	SubnetPrivate	SubnetInternet	GatewayElastic	IPNat	GatewayRoute	tablesRoute	table	associationsSecurity	groups	(ingress	ssh	and	egress	all)Ec2keypairBastion	host	(public	Subnet)Private	Instance	(Private	Subnet)Terraform	cli	installedAWS	account	with	permissions	to	create	the	above	resourcesOpen
TerminalPaste	the	text	belowssh-keygen	-m	PEM	-f	terraform_aws_bastion_ssh	-N	''This	will	create	the	new	ssh	key	In	the	same	Terminal	paste	the	text	below	subsituting	your	aws	access	key	and	secret	access	key.export	AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLEexport
AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEYexport	AWS_DEFAULT_REGION=ca-central-1	Typically	we	don't	commit	the	.tfvars	file	to	version	control.	For	ease:Run	the	following	command	in	the	same	Terminalcp	terraform.tfvars.example	terraform.tfvars	Run	the	following	commands	in	the	same
Terminalterraform	initterraform	validateterraform	planReview	the	planned	changes	and	run	the	following	command	You	will	see	that	after	the	bastion	host	has	been	provisioned,	the	private	instance	will	then	be	provisioned.	The	terraform	provisioner	will	connect	to	the	private	instance	via	the	bastion	host	and	run	the	inline	scripts	to	setup	the	LAMP
stack.	See	the	code	snippet	below.	provisioner	"remote-exec"	{	inline	=	["sudo	yum	update	-y",	"sudo	amazon-linux-extras	install	-y	lamp-mariadb10.2-php7.2	php7.2",	"cat	/etc/system-release",	"sudo	yum	install	-y	httpd	mariadb-server",	"sudo	systemctl	start	httpd",	"sudo	systemctl	enable	httpd",	"sudo	systemctl	is-enabled	httpd"]	}	connection	{	host
=	self.private_ip	type	=	"ssh"	user	=	"ec2-user"	private_key	=	file(var.ssh_private_key_path)	bastion_host	=	aws_instance.my_bastion_instance.public_ip	bastion_host_key	=	file(var.ssh_public_key_path)	}Run	the	following	commands	in	the	same	Terminal	Are	you	a	beginner	and	planning	to	learn	Terraform?	Do	you	want	to	know	all	the	basic
fundamental	concepts	of	Terraform	and	how	it	works	before	you	go	diving	deep,	then	this	terraform	tutorial	blog	post	is	for	you!In	this	blog	post,	I	am	going	to	cover	a	brief	introduction	of	Infrastructure	as	Code	(IaC),	Terraform,	its	lifecycle,	and	all	the	core	concepts	that	every	beginner	should	know.	I	have	tried	to	cover	all	the	topics	in	this
beginners	guide	that	will	give	you	a	quick	start	for	using	Terraform.	What	Is	Infrastructure	as	Code	(IaC)?Infrastructure	as	Code	(IaC)	is	a	widespread	terminology	amongDevOps	professionals	and	a	key	DevOps	practice	in	the	industry.	It	is	the	process	of	managing	and	provisioning	the	complete	IT	infrastructure	(comprises	both	physical	and	virtual
machines)	using	machine-readable	definition	files.	It	helps	in	automating	the	complete	data	center	by	using	programming	scripts.Popular	IaC	Tools:1.	TerraformAn	open-source	declarative	tool	that	offers	pre-written	modules	to	build	and	manage	an	infrastructure.2.	Chef:	A	configuration	management	tool	that	uses	cookbooks	and	recipes	to	deploy	the
desired	environment.	Best	used	for	Deploying	and	configuring	applications	using	a	pull-based	approach.3.	Puppet:	Popular	tool	for	configuration	management	that	follows	a	Client-Server	Model.	Puppet	needs	agents	to	be	deployed	on	the	target	machines	before	the	puppet	can	start	managing	them.4.	Ansible:	Ansible	is	used	for	building	infrastructure
as	well	as	deploying	and	configuring	applications	on	top	of	them.	Best	used	for	Ad	hoc	analysis.5.	Packer:	Unique	tool	that	generates	VM	images	(not	running	VMs)	based	on	steps	you	provide.	Best	used	for	Baking	compute	images.6.	Vagrant:	Builds	VMs	using	a	workflow.	Best	used	for	Creating	pre-configured	developer	VMs	within	VirtualBox.Read
our	blog	to	know	why	Terraform	is	preferred	over	other	IaC	tools	Terraform	vs	Ansible	Kickstart	Your	Terraform	Journey:	Free	Terraform	MasterClass	for	Beginners!Enroll	For	Free	Terraform	is	one	of	the	most	popular	Infrastructure-as-code	(IaC)	tool,	used	by	DevOps	teams	to	automate	infrastructure	tasks.	It	is	used	to	automate	the	provisioning	of
your	cloud	resources.	Terraform	is	an	open-source,	cloud-agnostic	provisioning	tool	developed	by	HashiCorp	and	written	in	GO	language.Benefits	of	using	Terraform:Does	orchestration,	not	just	configuration	managementSupports	multiple	providers	such	as	AWS,	Azure,	Oracle,	GCP,	and	many	moreProvide	immutable	infrastructure	where
configuration	changes	smoothlyUses	easy	to	understand	language,	HCL	(HashiCorp	configuration	language)Easily	portable	to	any	other	providerCheck	out	our	blog	for	everything	you	need	to	know	about	Terraform	Certification	Terraform	CertificationTerraform	LifecycleTerraform	lifecycle	consists	of	init,plan,apply,	anddestroy.1.	Terraform	init
initializes	the	(local)	Terraform	environment.	Usually	executed	only	once	per	session.2.	Terraform	plan	compares	the	Terraform	state	with	the	as-is	state	in	the	cloud,	build	and	display	anexecution	plan.	This	does	not	change	the	deployment	(read-only).3.	Terraform	apply	executes	the	plan.	This	potentially	changes	the	deployment.4.	Terraform	destroy
deletes	all	resources	that	are	governed	by	this	specific	terraform	environment.Terraform	Core	Concepts1.	Variables:	Terraform	has	input	and	output	variables,	it	is	a	key-value	pair.	Input	variables	are	used	as	parameters	to	input	values	at	run	time	to	customize	our	deployments.	Output	variables	are	return	values	of	a	terraform	module	that	can	be
used	by	other	configurations.Read	our	blog	on	Terraform	Variables2.	Provider:	Terraform	users	provision	their	infrastructure	on	the	major	cloud	providers	such	as	AWS,	Azure,	OCI,	and	others.	A	provider	is	a	plugin	that	interacts	with	the	various	APIs	required	to	create,	update,	and	delete	various	resources.Read	our	blog	to	know	more	about
Terraform	Providers3.	Module:	Any	set	of	Terraform	configuration	files	in	a	folder	is	a	module.	Every	Terraform	configuration	has	at	least	one	module,	known	as	itsroot	module.4.	State:	Terraform	records	information	about	what	infrastructure	is	created	in	a	Terraform	state	file.	With	the	state	file,	Terraform	is	able	to	find	the	resources	it	created
previously,	supposed	to	manage	and	update	them	accordingly.5.	Resources:	Cloud	Providers	provides	various	services	in	their	offerings,	they	are	referenced	as	Resources	in	Terraform.	Terraform	resources	can	be	anything	from	compute	instances,	virtual	networks	to	higher-level	components	such	as	DNS	records.	Each	resource	has	its	own	attributes
to	define	that	resource.6.	Data	Source:	Data	source	performs	a	read-only	operation.	It	allows	data	to	be	fetched	or	computed	from	resources/entities	that	are	not	defined	or	managed	by	Terraform	or	the	current	Terraform	configuration.7.	Plan:	It	is	one	of	the	stages	in	the	Terraform	lifecycle	where	it	determines	what	needs	to	be	created,	updated,	or
destroyed	to	move	from	the	real/current	state	of	the	infrastructure	to	the	desired	state.8.	Apply:	It	is	one	of	the	stages	in	the	Terraform	lifecycle	where	it	applies	the	changes	real/current	state	of	the	infrastructure	in	order	to	achieve	the	desired	state.Check	Out:Our	previous	blog	post	on	Terraform	Cheat	Sheet.Terraform	InstallationBefore	you	start
working,	make	sure	you	have	Terraform	installed	on	your	machine,	it	can	be	installed	on	any	OS,	say	Windows,	macOS,	Linux,	or	others.	Terraform	installation	is	an	easy	process	and	can	be	done	in	a	few	minutes.Read	our	blog	to	know	how	to	install	Terraform	in	Linux,	Mac,	WindowsWe	cover	the	step-by-step	Terraform	installation	in	all	these	ways
in	our	Terraform	training.	Check	out	our	blog	for	all	the	Hands-on	Labs	that	we	cover	in	our	training	HashiCorp	Certified	Terraform	Associate-Step	By	Step	Activity	Guides.Terraform	ProvidersA	provider	is	responsible	for	understanding	API	interactions	and	exposing	resources.	It	is	an	executable	plug-in	that	contains	code	necessary	to	interact	with
the	API	of	the	service.	Terraform	configurations	must	declare	which	providers	they	require	so	that	Terraform	can	install	and	use	them.Terraform	has	over	a	hundred	providers	for	different	technologies,	and	each	provider	then	gives	terraform	user	access	to	its	resources.	So	through	AWS	provider,	for	example,	you	have	access	to	hundreds	of	AWS
resources	like	EC2	instances,	the	AWS	users,	etc.Read	More:About	Terraform	Workflow.Terraform	Configuration	FilesConfiguration	files	are	a	set	of	files	used	to	describe	infrastructure	in	Terraform	and	have	the	file	extensions	.tf	and	.tf.json.	Terraform	uses	a	declarative	model	for	defining	infrastructure.	Configuration	files	let	you	write	a
configuration	that	declares	your	desired	state.	Configuration	files	are	made	up	of	resources	with	settings	and	values	representing	the	desired	state	of	your	infrastructure.A	Terraform	configuration	is	made	up	of	one	or	more	files	in	a	directory,	provider	binaries,	plan	files,	and	state	files	once	Terraform	has	run	the	configuration.1.	Configuration	file
(*.tf	files):	Here	we	declare	the	provider	and	resources	to	be	deployed	along	with	the	type	of	resource	and	all	resources	specific	settings2.	Variable	declaration	file	(variables.tf	or	variables.tf.json):	Here	we	declare	the	input	variables	required	to	provision	resources3.	Variable	definition	files	(terraform.tfvars):	Here	we	assign	values	to	the	input
variables4.	State	file	(terraform.tfstate):	a	state	file	is	created	once	after	Terraform	is	run.	It	stores	state	about	our	managed	infrastructure.Also	Read:Our	blog	post	on	Terraform	Create	VM.Getting	started	using	TerraformTo	get	started	building	infrastructure	resources	using	Terraform,	there	are	few	things	that	you	should	take	care	of.	The	general
steps	to	deploy	a	resource(s)	in	the	cloud	are:Set	up	a	Cloud	Account	on	any	cloud	provider	(AWS,	Azure,	OCI)Install	TerraformAdd	a	provider	AWS,	Azure,	OCI,	GCP,	or	othersWrite	configuration	filesInitialize	Terraform	ProvidersPLAN	(DRY	RUN)	using	terraform	planAPPLY	(Create	a	Resource)	using	terraform	applyDESTROY	(Delete	a	Resource)
using	terraform	destroyAlso	Check:Our	blog	post	on	Terraform	Interview	Question.Import	Existing	InfrastructureTerraform	is	one	of	the	great	IaC	tools	with	which,	you	can	deploy	all	your	infrastructures	resources.	In	addition	to	that,	you	can	manage	infrastructures	from	different	cloud	providers,	such	as	AWS,	Google	Cloud,	etc.	But	what	if	you	have
already	created	your	infrastructure	manually?Terraform	has	a	really	nice	feature	for	importing	existing	resources,	which	makes	the	migration	of	existing	infrastructure	into	Terraform	a	lot	easier.Currently,	Terraform	can	only	import	resources	into	the	state.	It	does	not	generate	a	configuration	for	them.	Because	of	this,	prior	to	running	terraform
import	it	is	necessary	to	write	manually	a	resource	configuration	block	for	the	resource,	to	which	the	imported	object	will	be	mapped.	For	example:resource	"aws_instance"	"import_example"	{	#	...instance	configuration...	}Now	terraform	import	can	be	run	to	attach	an	existing	instance	to	this	resource	configuration:$	terraform	import
aws_instance.import_example	i-03efafa258104165fThis	command	locates	the	AWS	instance	with	ID	i-03efafa258104165f	(which	has	been	created	outside	Terraform)	and	attaches	it	to	the	name	aws_instance.import_examplein	the	Terraform	state.Check	Out:Our	blog	post	on	Terraform	Tips	and	Tricks.ConclusionI	hope	the	above	gives	you	an	idea
about	how	you	can	get	started	with	Terraform.	If	you	are	interested	in	learning	more,	then	I	would	suggest	checking	out	our	training	Cloud	Infrastructure	Automation	Certification:	Terraform	Associate	Training	where	we	have	covered	all	these	topics	in	detail	and	much	more	along	with	Hands-on	labs	on	each	topic.Frequently	Asked	Questions	No,
prior	programming	or	infrastructure	experience	is	not	necessary	to	follow	the	guide.	It	is	designed	to	cater	to	beginners	and	assumes	no	prior	knowledge	of	Terraform.	The	guide	provides	step-by-step	explanations	and	examples	to	help	newcomers	understand	and	apply	the	concepts	effectively.	The	guide	may	mention	a	few	prerequisites,	such	as
having	a	basic	understanding	of	cloud	computing	concepts	and	having	an	account	with	a	cloud	provider	(if	you	plan	to	provision	resources	in	the	cloud).	Additionally,	it	may	recommend	installing	Terraform	and	a	text	editor	suitable	for	writing	code.	Yes,	the	Terraform	Beginner's	Guide	typically	includes	hands-on	examples	and	exercises	throughout
the	content.	These	examples	help	solidify	the	concepts	and	allow	readers	to	practice	writing	Terraform	configurations,	executing	commands,	and	managing	infrastructure	resources.	Infrastructure	as	Code	tools	typically	handle	updates	and	changes	by	comparing	the	desired	state	defined	in	the	code	with	the	current	state	of	the	infrastructure.	When
changes	are	made	to	the	code,	the	tools	generate	an	execution	plan	that	outlines	the	modifications	required	to	achieve	the	desired	state.	This	plan	can	be	reviewed	and	then	applied	to	update	or	modify	the	infrastructure	accordingly.	Yes,	Infrastructure	as	Code	can	be	used	for	existing	infrastructure.	By	defining	the	existing	infrastructure	in	code,	you
can	capture	its	current	state	and	make	modifications	to	it	using	code-based	configuration	files.	This	approach	allows	you	to	manage	existing	infrastructure	in	a	consistent	and	automated	manner.	Related/References	Join	FREE	Class	Master	Terraform	&	DevOps	to	get	High-Paying	Jobs!	Join	our	EXCLUSIVE	Free	class!	Get	your	hands	dirty	with	lots	of
projects	and	labs	based	on	Terraform	and	DevOps	in	our	Program.Click	on	the	below	image	to	Register	for	Our	FREE	Class	Now!Terraform	is	an	infrastructure	as	code	tool	that	lets	you	build,	change,	and	version	infrastructure	safely	and	efficiently.	This	includes	low-level	components	like	compute	instances,	storage,	and	networking;	and	high-level
components	like	DNS	entries	and	SaaS	features.Learn	more	In	our	previous	post,	we	explored	how	to	enhance	storage	resiliency	by	attaching	EFS	volumes	to	multiple	EC2	instances.	Now,	let's	delve	into	AWS	networking	concepts,	starting	with	the	pivotal	role	of	Bastion	hosts.	We'll	employ	Terraform	to	create	modular	components,	ensuring	a
seamless	and	reproducible	setup.	A	bastion	host	is	a	server	whose	purpose	is	to	provide	access	to	a	private	network	from	an	external	network,	such	as	the	Internet.	Because	of	its	exposure	to	potential	attack,	a	bastion	host	must	minimize	the	chances	of	penetration.	For	example,	you	can	use	a	bastion	host	to	mitigate	the	risk	of	allowing	SSH
connections	from	an	external	network	to	the	Linux	instances	launched	in	a	private	subnet	of	your	Amazon	Virtual	Private	Cloud	(VPC).	Architecture	Overview:	Before	diving	into	implementation,	let's	understand	the	architecture	we'll	be	building:	Step	1:	Creating	the	VPC	and	Network	Components	Create	VPC	with	IGW,	1	Public	and	1	private	subnet
with	route	table	associations.	Please	refer	to	my	github	repo	in	resources	section	below.	Step	2:	Deploying	a	Bastion	Host	in	the	Public	Subnet	and	a	Private	Host	in	the	Private	Subnet	Deploy	Linux	EC2	instances	one	in	each	subnet.	###	Create	EC2	Server
Instances##	module	"vpc_a_bastion_host"	{	source	=	"./modules/web"	instance_type	=	var.instance_type	instance_key	=	var.instance_key	subnet_id	=	module.vpc_a.public_subnets[0]	vpc_id	=	module.vpc_a.vpc_id	ec2_name	=	"Bastion	Host	A"	sg_ingress_ports	=
var.sg_ingress_public	common_tags	=	local.common_tags	naming_prefix	=	local.naming_prefix}	module	"vpc_a_private_host"	{	source	=	"./modules/web"	instance_type	=	var.instance_type	instance_key	=	var.instance_key	subnet_id	=	module.vpc_a.private_subnets[0]	vpc_id	=	module.vpc_a.vpc_id	ec2_name	=	"Private	Host	A"	sg_ingress_ports	=
var.sg_ingress_private	common_tags	=	local.common_tags	naming_prefix	=	local.naming_prefix}	Step	3:	Implementing	Access	Restriction	using	Security	Groups	Amend	private	subnet	security	group	to	allow	traffic	only	from	public	subnet.	###	Amend	Private	Host	SG
to	allow	traffic	from	Bastion	Host	SG##resource	"aws_security_group_rule"	"public_in_ssh"	{	type	=	"ingress"	from_port	=	22	to_port	=	22	protocol	=	"tcp"	security_group_id	=	module.vpc_a_private_host.security_group_id	source_security_group_id	=
module.vpc_a_bastion_host.security_group_id}	Steps	to	Run	Terraform	Follow	these	steps	to	execute	the	Terraform	configuration:	terraform	initterraform	plan	terraform	apply	-auto-approve	Upon	successful	completion,	Terraform	will	provide	relevant	outputs.	Apply	complete!	Resources:	12	added,	0	changed,	0	destroyed.	Testing	the	outcome
Bastion	Host	with	Public	IP	in	Public	Subnet:	Private	Host	without	Public	IP	in	Private	Subnet:	Private	Host	Security	group	with	only	inbound	from	Bastion	Host	Security	Group:	Connecting	to	Private	Host	from	Bastion	Host.	You	will	need	to	create	key	pair	with	correct	permissions	on	bastion	host	before	connecting	to	Private	Host	chmod	0400
WorkshopKeyPair.pemssh	ec2-user@10.1.2.71	-i	WorkshopKeyPair.pem	Cleanup:	Remember	to	stop	AWS	components	to	avoid	large	bills.	terraform	destroy	-auto-approve	With	the	Bastion	host	setup	accomplished,	our	next	module	will	delve	deeper	into	AWS	networking.	We'll	explore	setting	up	peer-to-peer	VPC	connections	to	further	enhance	our
network	architecture.	Resources:	Github	Link:	Host	Concept:	As	the	software	development	landscape	evolves	in	2025,	organisations	are	increasingly	focused	on	optimising	the	way	they	build,	deploy,	and	manage	applications.	Please	enable	Javascript	to	use	this	application	In	this	article,	we	will	discuss	what	a	Bastion	architecture	is,	the	challenges	it
solves,	and	we	will	have	fun	implementing	it	on	AWS	using	Terraform.We	will	also	see	how	to	have	a	backup	in	case	of	loss	of	the	Bastion	host,	using	AWS	Session	Manager.This	article	is	made	to	be	light	and	fun.	It	will	be	enough	to	introduce	you	to	secure	cloud	architectures.This	article	contains	an	intermediate-level	lab,	we	assume	that	you	have
knowledge	of	AWS	(VPC,	EC2,	Subnets..)	and	Terraform,	and	are	comfortable	with	SSH.Pre-requisitesBefore	we	dive	into	the	main	subject,	lets	make	sure	you	have	the	necessary	tools	for	this	lab.AWS	account	and	Access	KeysAWS	CLITerraformSSH	CLI	and	SSH	keypairChallengesIn	a	cloud	environment,	securing	resources	is	the	most	crucial	part	of
building	architectures.	Imagine	working	in	a	multi-billion	company	and	having	an	EC2	instance	hacked	and	secret	data	used.	The	companys	stocks	will	instantly	crash,	starting	a	crisis	and	probably	putting	an	end	to	this	company.Now	that	we	have	a	real	impact	of	what	an	insecure	cloud	architecture	would	make	on	a	company,	lets	take	it	into	a
smaller	context.Say	you	have	a	personal	AWS	VPC,	with	3	EC2	instances.	The	instances	are	in	a	public	subnet,	you	access	them	using	SSH	(via	public	internet)	to	make	development	and	maintenance	operations.One	day,	you	started	to	observe	intrusion	attempts	made	by	strange	sources.	So	you	decide	to	put	these	instances	in	a	private	subnet	thats
not	accessible	from	the	outside	world.	Now	your	EC2	instances	are	perfectly	secure,	but	How	would	you	access	them?	You	lost	your	access.Here	comes	the	role	of	a	Bastion	host.A	Bastion	host	is	a	specially	configured	server	designed	to	act	as	a	gateway	between	an	untrusted	network,	in	our	case	the	internet,	and	a	private	trusted	network,	in	our
case	AWS	private	subnets.Key	featuresBastion's	key	features	are:Single	Entry	Point:	channels	all	external	traffic	through	its	secure	gateway.Hardened	Security:	minimal	services	installed	to	reduce	vulnerabilities,	including	firewalls,	intrusion	detection	softwares,	and	authentication	systems.Access	Control:	It	verifies	and	limits	access	to	authorized
users.Audit	and	Monitoring:	Logs	and	monitors	incoming	and	outgoing	traffic.ArchitectureLets	discuss	the	architecture	component	by	component1	VPC	main-vpc1	private	subnet	with	the	CIDR	192.168.1.15	private-instances-subnet3	EC2	instances	private{001,002,003}	in	the	subnet	private-instances-subnet1	public	subnet	CIDR	192.168.1.16
bastions-subnet1	EC2	instance	bastion001	in	the	subnet	bastions-subnet1	Internet	gateway	main-igw1	NAT	gateway	main-nat-gateway1	Local	desktop	yours	:)ImplementationIve	prepared	for	you	all	the	necessary	Terraform	configuration	and	other	resources,	so	we	can	focus	on	understanding	them.The	code	is	located	on	GitHub	aws-bastion-
architecture.Clone	the	repositorygit	clone	git@github.com:rafikbahri/aws-bastion-architecture.gitThe	project	structure	is	as	follow#	---	Project	Structure	---bastion.tf	#	bastion	configuration	(subnet,	instances,	sg..)main.tf	#	defines	the	provider	(aws)outputs.tf	#	terraform	outputs	(bastions	public	ips,	private	instances	ips..)private.tf	#	private
instances	configuration	(subnet,	instances,	sg..)ssh-config.tf	#	generate	ssh	config	file	located	in	.ssh/configssm.tf	#	aws	session	manager	configuration	(sg..)variables.tf	#	global	variablesvpc.tf	#	vpc	configuration	(subnets,	sg,	vpc,	igw...)[.config]	cloudinit_user_data.yaml	#	contains	you	public	ssh	key[modules]	#	custom	terraform	modules	[aws-
node]	#	encapsulates	an	ec2	instnace/node	configuration	README.md	main.tf	outputs.tf	variables.tf	versions.tf	[aws-private-subnet]	#	encapsulates	a	private	subnet	configuration	README.md	main.tf	outputs.tf	variables.tf	versions.tf	[aws-public-subnet]	#	encapsulates	a	public	subnet	configuration	README.md	main.tf	outputs.tf	variables.tf
versions.tf	[aws-sg]	#	encapsulates	a	security	group	configuration	README.md	main.tf	outputs.tf	variables.tf	versions.tf	[aws-vpc]	#	encapsulates	a	vpc	configuration	README.md	main.tf	outputs.tf	variables.tf	versions.tfWell	explain	the	major	important	parts	of	the	project,	enjoy	reading	the	code	on	your	side	and	try	to	understand	every	little	bit	of
it.Lets	dive	deep	into	the	bastion.tf	configuration	fileIn	the	first	part,	we	define	the	bastions-subnet	that	uses	a	module	to	create	an	AWS	public	subnet	inside	the	VPC	we	create	using	vpc.tf.Then	we	define	a	group	of	instances,	in	our	case	var.bastion_servers_count	is	equal	to	1.	Check	the	variables.tf	file	for	all	the	details	on	the	values	of	the
variables.We	can	scale	the	server	count	to	3,	providing	the	private_ips	which	is	a	list	of	IPs	inside	the	subnet,	which	has	a	CIDR	of	192.168.15.0/24.The	user_data_file	is	a	crucial	part	of	this	configuration	since	it	has	our	public	SSH	key.	This	file	has	a	configuration	Shell	script	that	is	run	during	the	startup	of	the	EC2	instances.Youll	need	to	override
the	value	of	SSH_PUBLIC_KEY	inside	the	.config/cloudinit_user_data.yaml	file	with	your	own	SSH	public	key.The	bastion	host	has	2	security	groups:	module.sg-admin-bastions.sg_id,	module.sg-admin.sg_id.module	"bastions-subnet"	{	source	=	"./modules/aws-public-subnet"	name	=	"bastion-subnet"	vpc_id	=	module.main-vpc.vpc_id	availability_zone	=
"eu-west-3a"	cidr_block	=	var.bastions_subnet_cidr	map_public_ip_on_launch	=	true	public_internet_route_table_id	=	module.main-vpc.public_internet_route_table_id	has_internet_access	=	true	tags	=	{	group	=	"bastions"	}}module	"bastions"	{	source	=	"./modules/aws-node"	server_count	=	var.bastion_servers_count	server_prefix	=	"bastion"	ami_id
=	"ami-0546127e0cf2c6498"	instance_type	=	"t2.micro"	vpc_id	=	module.main-vpc.vpc_id	subnet_id	=	module.bastions-subnet.subnet_id	private_ips	=	[["192.168.15.11"],	["192.168.15.12"],	["192.168.15.13"]]	create_key	=	false	security_groups	=	[module.sg-admin-bastions.sg_id,	module.sg-admin.sg_id]	user_data_file	=
".config/cloudinit_user_data.yaml"	tags	=	{	purpose	=	"bastion"	description	=	"Serves	for	SSH	access"	component	=	"infra"	}}Lets	understand	the	security	groups.module	"sg-admin-bastions"	{	source	=	"./modules/aws-sg"	name	=	"sg_admin_bastions"	description	=	"Admin	security	group"	vpc_id	=	module.main-vpc.vpc_id	ingress_rules	=	[{
description	=	"SSH	only	from	admin	IP	addresses."	from_port	=	22	to_port	=	22	protocol	=	"tcp"	cidr_blocks	=	["88.178.215.32/32"	#	My	public	IP	address]	#	Required	attribues:	ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[]	self	=	false	},	{	description	=	"Ping	inside	VPC."	from_port	=	0	to_port	=	0	protocol	=	"icmp"	cidr_blocks	=
["192.168.0.0/16"]	ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[]	self	=	false	}]	egress_rules	=	[{	description	=	"Allow	all	outbound	traffic."	from_port	=	0	to_port	=	0	protocol	=	"-1"	cidr_blocks	=	["0.0.0.0/0"]	ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[]	self	=	false	}]}module	"sg-admin"	{	source	=	"./modules/aws-sg"
name	=	"sg_admin"	description	=	"Admin	security	group	incoming	only	from	bastions"	vpc_id	=	module.main-vpc.vpc_id	ingress_rules	=	[{	description	=	"SSH	using	EC2	instance	connect	(from	AWS	console)."	from_port	=	22	to_port	=	22	protocol	=	"tcp"	cidr_blocks	=	["35.180.112.80/29"	#	EC2	instance	connect	service	IPs	in	my	region]
ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[module.sg-admin-bastions.sg_id]	self	=	false	},	{	description	=	"Ping	inside	VPC."	from_port	=	-1	to_port	=	-1	protocol	=	"icmp"	cidr_blocks	=	["192.168.0.0/16"]	ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[]	self	=	false	}]	egress_rules	=	[{	description	=	"Allow	all	outbound
traffic."	from_port	=	0	to_port	=	0	protocol	=	"-1"	cidr_blocks	=	["0.0.0.0/0"]	ipv6_cidr_blocks	=	[]	prefix_list_ids	=	[]	security_groups	=	[]	self	=	false	}]}sg-admin-bastions	allows	SSH	access	to	the	bastion	host	only	from	my	public	IP	address.	So	youll	need	to	change	that	value	by	your	own	public	IP	address.sg-admin	allows	EC2	Instance	Connect	as	a
backup	method	in	case	we	lose	our	SSH	keys.	(Totally	optional	but	its	a	nice	facility	in	this	architecture)Now	lets	understand	the	private	instances	configurationmodule	"private-instances-subnet"	{	source	=	"./modules/aws-private-subnet"	name	=	"private-instances-subnet"	vpc_id	=	module.main-vpc.vpc_id	availability_zone	=	"eu-west-3a"	cidr_block
=	var.private_instances_subnet_cidr	public_subnet_id	=	module.bastions-subnet.subnet_id	has_internet_access	=	true	tags	=	{	kind	=	"private"	}}module	"private-instances"	{	source	=	"./modules/aws-node"	server_count	=	var.private_instances_count	server_prefix	=	"private"	ami_id	=	"ami-0546127e0cf2c6498"	instance_type	=	"t2.micro"	vpc_id	=
module.main-vpc.vpc_id	subnet_id	=	module.private-instances-subnet.subnet_id	private_ips	=	[["192.168.16.11"],	["192.168.16.12"],	["192.168.16.13"]]	create_key	=	false	security_groups	=	[module.sg-admin.sg_id]	user_data_file	=	".config/cloudinit_user_data.yaml"	tags	=	{	kind	=	"private"	}}This	is	a	typical	configuration,	we	define	a	subnet	and	a
group	of	nodes/instances.	We	initialize	the	EC2	instances	with	the	.config/cloudinit_user_data.yaml	and	we	configure	security	groups	to	use	module.sg-admin.sg_id	so	we	only	accept	SSH	from	the	Bastion	host.Lastly,	before	we	attack	the	practical	part,	lets	talk	about	ssm.tf.This	file	configures	AWS	Session	Manager	for	all	of	our	EC2	instances.Session
Manager	is	a	service	that	gives	us	access	to	EC2	instances	without	the	need	for	SSH.Its	a	great	backup	method	if	we	lose	our	SSH	keys	or	Bastion	host.Initialize	Terraform	resourcesterraform	initIts	a	good	practice	to	generate	a	terraform	plan	and	read	it	before	applying	the	configuration.	Lets	go	ahead	and	runterraform	planOnce	we	are	sure	of	our
configuration,	we	can	go	ahead	and	apply	itterraform	applyThe	`terraform	apply`	command	runs	the	plan	command	and	asks	for	explicit	confirmation	by	typing	`yes`Test	the	architectureOn	your	AWS	Console,	open	EC2	>	Instances	(Running)EC2	>	Instances	(Running)We	can	see	that	only	the	bastion	host	bastion001	has	a	Public	IPv4.Test	your	SSH
access	to	the	Bastion	hostssh	-F	.ssh/config	ec2-user@bastion001Test	your	SSH	access	to	a	private	instancessh	-F	.ssh/config	ec2-user@private001You	should	have	a	similar	output	toSSH	access	testsGo	ahead	and	test	your	access	using	AWS	Session	Manager	as	wellTo	do	so,	choose	an	EC2	instance,	then	Connect	>	Session	ManagerConnectConnect
Session	ManagerSession	Manager	testConclusionWe	understood	what	a	Bastion	host	is,	its	challenges,	and	key	features.We	also	saw	how	to	implement	a	typical	Bastion	host	architecture	on	AWS	and	have	a	backup	thanks	to	AWS	Session	Manager,	all	this	using	the	famous	Terraform.I	hope	you	enjoyed	this	article,	feel	free	to	give	me	your	feedback
and	whether	you	want	me	to	make	similar	articles	on	other	Cloud	architectures	on	AWS	using	Terraform.Thanks	a	lot,	see	you	in	other	tech	articles!Security	is	extremely	important.	Ensuring	security	is	a	critical	aspect	of	our	infrastructure,	which	is	why	we	deploy	certain	resources	in	private	subnets,	that	are	not	accessible	from	the	internet.
However,	there	are	scenarios	where	we	still	require	access	to	these	resources	over	the	Internet.For	instance,	when	creating	an	Amazon	EC2	instance	or	an	Amazon	RDS	DB	instance	in	a	private	subnet	(without	internet	connectivity	and	public	IPs),	accessing	them	becomes	challenging.	In	such	cases,	there	are	several	solutions	available	to	connect
these	private	resources	within	the	Amazon	Web	Services	(AWS)	environment.The	preferred	approach	is	establishing	connectivity	through	a	Virtual	Private	Network	(VPN)	or	AWS	Direct	Connect,	which	offers	secure	connections.	However,	if	you	do	not	have	VPN	or	Direct	Connect	configured,	an	alternative	option	is	to	utilize	a	Bastion	Host,	That	can
help	add	a	layer	of	security	to	your	AWS	instances	is	the	Bastion	host.A	bastion	host	is	a	server	whose	purpose	is	to	provide	access	to	a	private	network	from	an	external	network,	such	asTerraform	is	an	infrastructure	as	code	tool	that	lets	you	build,	change,	and	version	infrastructure	safely	and	efficiently.	This	includes	low-level	components	like
compute	instances,	storage,	and	networking;	and	high-level	components	like	DNS	entries	and	SaaS	features.Learn	more	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these
freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must
distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an
applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Follow	the	documentationto	update	the	SSH	configuration	file	to	allow	SSH	connections	through
Session	Manager.It	allows	running	a	proxy	command	that	starts	a	Session	Manager	session	and	transfer	all	data	through	opened	connection.	Generate	local	SSH	private	and	public	keys.	For	example,	you	can	use	following	command:ssh-keygen	-t	rsa	-f	my_keyIt	will	generate	private	and	public	SSH	key	pair	which	are	going	to	be	used	to	connect	to
bastion	host.It	is	recommended	to	provide	password	to	protect	access	to	keys	and	store	keys	in	secure	location.	In	order	to	connect	to	deployed	bastion	host	you	will	need	to	obtain	EC2	instance	id.	There	are	multiple	ways	you	can	dothat.	For	example	you	can	get	it	using	AWS	console	by	navigatingto	EC2	dashboard	or	through	AWS	CLI	using:aws	ec2
describe-instancesTo	further	filter	results	you	can	use	following	command:aws	ec2	describe-instances	--filters	'Name=tag:Name,Values=$BASTION_HOST_TAG'	--output	text	--query	'Reservations[*].Instances[*].InstanceId'	--output	textReplace	$BASTION_HOST_TAG	with	tag	used	to	mark	bastion	host.	Default	value	is	sandbox-dev-bastion-host.Copy
obtained	EC2	instance	id	for	later	use.	In	order	to	connect	to	the	bastion	host	we	first	have	to	send	SSH	key	to	the	host	using	EC2	Instance	Connect.Use	following	command	replacing	$INSTANCE_ID	with	EC2	instance	id	obtained	in	previous	step	and	$PUBLIC_KEY_FILEwith	path	to	your	public	key	file	(for	example:	my_key.pub).Be	sure	to	use	public
key	and	NOT	private	key.aws	ec2-instance-connect	send-ssh-public-key	--instance-id	$INSTANCE_ID	--instance-os-user	ec2-user	--ssh-public-key	file://$PUBLIC_KEY_FILEYou	should	receive	message	indicated	successful	upload	of	key.	You	have	just	uploaded	temporary	SSH	keyto	EC2	instance	metadata	where	itsgoing	to	remain	for	60	seconds.	After
60	seconds	SSH	key	gets	removed	automatically,	and	you	wont	be	able	to	use	it	toconnect	to	the	instance.	You	will	see	Permission	denied	error	if	you	try.	If	this	happens	you	can	resend	the	key	usingthe	same	command.This	means	that	you	have	60	seconds	to	initialize	SSH	connection	after	you	upload	keys.	Follow	next	step	to	do	so.	In	this	last	step
you	will	connect	to	your	bastion	host	using	SSH.	Use	following	command	replacing$PRIVATE_KEY_FILE	with	path	to	your	private	key	(for	example:	my_key)	and	$INSTANCE_ID	with	EC2	instance	id	obtainedinprevious	steps.ssh	-i	$PRIVATE_KEY_FILE	ec2-user@$INSTANCE_IDConfirm	connection	by	typing	yes.	It	will	open	SSH	connection	using
previously	configured	Session	Manager.Youre	in!	It	is	possible	to	use	different	options	to	open	connection	to	bastion	host.	For	example	you	can	use	-D	8888	option	toopen	SSH	connection	with	a	local	dynamic	application-level	port	forwarding	through	8888	port.See	this	link	fordetailed	explanation.ssh	-i	$PRIVATE_KEY_FILE	-D	8888	ec2-
user@$INSTANCE_IDThis	is	kind	of	connection	opens	SOCKS	proxy	you	can	use	for	example	to	forward	traffic	from	your	local	browser	throughbastion	host.	Refer	to	man	pages	of	ssh	command	to	see	all	options.	In	order	to	remove	all	deployed	resources	run	the	following	command	from	the	root	directory	of	this	pattern:terraform	destroy	-var-
file="dev.tfvars"and	confirm	removal	of	resources.	Instead	of	manually	executing	steps	described	above,	you	can	use	provided	connect.sh	script.	It	willgenerate	set	of	SSH	keys,	push	them	to	EC2	instance	and	initiate	connection	with	the	host.	Execute	the	script	and	passtag	and	key	name	as	arguments.	Follow	the	prompt	to	connect	to	your	bastion
host.	Example:./connect.sh	sandbox-dev-bastion-host	my_key	Sometimes	you	might	experience	TargetNotConnected	error	when	trying	to	connect	to	the	bastion	host.Solution:	Logging	and	monitoring	are	important	parts	of	maintaining	systems	both	from	the	operational	and	security	perspectives.There	are	multiple	ways	in	which	you	can	monitor
connections	and	activity	in	your	bastion	host.	Below	you	can	find	someof	the	resources	from	AWS	documentation	that	are	related	to	this	topic:	You	cant	perform	that	action	at	this	time.	

Aws	bastion	host	terraform.	Bastion	host	aws.

