
	

https://xisos.maxudijuz.com/365209997763188332485049360551145952496476?modeburagofuladidezesemuvalisekejesadari=taxuzafoxugijukuriratabezofolosibogudukazetezufuladinusodivegivaladelukazinekuritejenuzuwivatujotogijajavodibagijudeperozejowokesebovufofuzijebijovamafumexomizavojofugijeluvofedudadizuwuzomixarudikabot&utm_term=powershell+script+examples&ratovakevepadurimikumajibevipaditibeg=migopamataboxuwebukogefojoxetonewigadubujazesejevowapotivajotokegutomitodaduvapiturimalatenonigovifuxabikazeluwupexutesobajigisizitise

PowerShell	is	an	open	source	programming	language	designed	for	automation.PowerShell	by	Example,	modeled	after	Go	by	Example,	is	a	hands-on	introduction	to	PowerShell	using	annotated	example	programs.	Check	out	the	first	example	or	browse	the	full	list	below.To	execute	the	scripts	make	sure	you	have	at	least	PowerShell	5	installed.Homeby
Sander	Stad	|source	|licenseIll	share	10	handy	scripts	Ive	crafted	to	automate	everyday	tasks	and	boost	your	productivity.	Whether	youre	a	seasoned	scripter	or	just	just	someone	looking	to	enhance	productivity	with	cool	automation,	these	gems	will	make	your	life	easier	and	save	you	from	tedious	clicks.	These	scripts	cover	a	range	of	scenarios	from
system	maintenance	to	data	manipulation.	Lets	get	started!Optimize	Performance	and	Stay	Informed	with	this	Free	Space	Monitoring	Script:Maintaining	adequate	free	space	on	your	C	drive	is	crucial	for	computer	performance	and	stability.	To	simplify	this	task,	Ive	developed	a	script	that	automatically	checks	the	free	space	on	your	C	drive	daily,
ensuring	you	stay	informed	about	its	availability.	Set	your	own	low-disk	space	threshold	(e.g.	10GB	free	space)	to	trigger	proactive	alerts.	You	can	schedule	this	to	run	once	daily.#	Define	the	threshold$threshold	=	30*1GB#	Get	the	C	drive	information$drive	=	Get-PSDrive	-Name	C#	Calculate	the	free	space	in	bytes$freeSpaceBytes	=	$drive.Free#
Convert	the	free	space	to	GB$freeSpaceGB	=	[Math]::Round($freeSpaceBytes	/	1GB,	2)#	Compare	the	free	space	with	the	thresholdif	($freeSpaceBytes	-lt	$threshold)	{	Write-Host	"Warning:	Free	space	on	C	drive	is	below	30GB.	Current	free	space	is	$freeSpaceGB	GB."}	else	{	Write-Host	"The	free	space	on	C	drive	is	sufficient.	Current	free	space	is
$freeSpaceGB	GB."}2.	Unveiling	App	Crashes:	A	PowerShell	Script	for	Application	Data	InspectionTarget	any	application:	Specify	the	application	name	and	the	script	delves	into	its	crash	data,	Gather	vital	information	like	crash	event	time,	crash	type,	and	even	potential	error	messages.#	Prompt	the	user	for	ProviderName	input$providerName	=
Read-Host	-Prompt	'Enter	the	ProviderName'#	Define	the	filter	criteria	with	user	input$filterHashtable	=	@{	LogName	=	'Application'	ProviderName	=	$providerName}#	Retrieve	the	latest	event	that	matches	the	filter	criteria$lastEvent	=	Get-WinEvent	-FilterHashtable	$filterHashtable	-MaxEvents	1#	Print	message	if	an	event	is	foundif
($lastEvent)	{	$lastEvent.Message}	else	{	Write-Host	"No	events	found	for	ProviderName:	$providerName"}3.	Find	Out	Where	in	the	World	an	IP	LivesSeen	movie	scenes	where	high	tech	guys	tracking	someone	using	IP?	You	can	do	that	simply	two	line	of	script	with	help	of	ip-api.coms	apitry	{	$IPaddress	=	Read-Host	"Enter	IP	address	to	locate"
$result	=	Invoke-RestMethod	-Method	Get	-Uri	"	IPaddress"	Write-Output	$result}	catch	{	"	Error	in	line	$($_.InvocationInfo.ScriptLineNumber):	$($Error[0])"	exit	1}4.	Secure	Your	PDFs	Fortress	with	This	PowerShell	ScriptProtect	your	sensitive	PDF	documents	with	ease	using	this	script	that	effortlessly	applies	password	protection	to	multiple	files
within	a	folder.	Efficiently	secure	large	numbers	of	PDFs	in	a	single	operation,	saving	you	time	and	effort.	For	this	to	work	first	install	qpdf	by	choco	install	qpdf#	Prompt	the	user	for	PDF	folder	and	password	input$pdfFolder	=	Read-Host	-Prompt	'Enter	the	path	to	the	folder	containing	PDF	files'$password	=	Read-Host	-Prompt	'Enter	the	password
to	be	applied	to	the	PDF	files'#	Get	all	PDF	files	in	the	folder$pdfFiles	=	Get-ChildItem	-Path	$pdfFolder	-Filter	*.pdf#	Loop	through	each	PDF	file	and	password-protect	itforeach	($pdfFile	in	$pdfFiles)	{	#	Define	the	output	file	with	the	same	name	as	the	original	file	$outputFile	=	$pdfFile.FullName	#	Temporary	filename	for	the	original	file
$tempFile	=	"$($pdfFile.FullName).temp"	#	Rename	the	original	file	Rename-Item	-Path	$pdfFile.FullName	-NewName	$tempFile	#	Password-protect	the	PDF	file	using	QPDF	&	qpdf	--encrypt	$password	$password	256	--	"$tempFile"	"$outputFile"	#	Remove	the	temporary	file	Remove-Item	-Path	$tempFile	-Force	Write-Host	"Password	protection
completed	for:	$($pdfFile.FullName)"}Write-Host	"Password	protection	completed	for	all	PDF	files	in	$pdfFolder."5.	Declutter	your	desktop	with	This	Recycle	Bin	Auto-CleanerTired	of	overflowing	recycle	bins	cluttering	your	precious	storage	space?	This	PowerShell	script	offers	a	tidy	solution,	automatically	emptying	the	bin	when	it	exceeds	a	set
threshold,	keeping	your	system	clean	and	efficienttry	{	$recycleBinPath	=	[System.IO.Path]::Combine($env:SystemRoot,	'Recycle	Bin')	$recycleBinSize	=	(Get-ChildItem	$recycleBinPath	-Recurse	|	Measure-Object	-Property	Length	-Sum).Sum	/	1GB	if	($recycleBinSize	-gt	30)	{	#change	threshold	as	needed	Clear-RecycleBin	-Confirm:$false	if
($lastExitCode	-ne	"0")	{	throw	"'Clear-RecycleBin'	failed"	}	}	else	{	Write-Output	"Recycle	bin	size	is	less	than	or	equal	to	30GB.	No	action	taken."	exit	0	#	success	}}	catch	{	"	Error	in	line	$($_.InvocationInfo.ScriptLineNumber):	$($Error[0])"	exit	1}6.	Zip	it	Up	and	Ship	It	Out!	Compress	Multiple	FoldersThis	script	that	effortlessly	zips	up	multiple
folders	within	a	specified	directory	saving	you	time	and	tedious	manual	actions	and	streamlining	your	file	management	and	saving	precious	storage	space	or	just	for	sharing	purposes.#	Prompt	the	user	for	source	and	destination	folders$SourceFolder	=	Read-Host	"Enter	the	source	folder"$DestinationFolder	=	Read-Host	"Enter	the	destination	folder
for	zipped	files"#	Check	if	the	source	folder	existsif	(-Not	(Test-Path	$SourceFolder	-PathType	Container))	{	Throw	"The	source	directory	$SourceFolder	does	not	exist,	please	specify	an	existing	directory"}#	Check	if	the	destination	folder	exists,	if	not,	create	itif	(-Not	(Test-Path	$DestinationFolder	-PathType	Container))	{	New-Item	-ItemType
Directory	-Path	$DestinationFolder	|	Out-Null}$date	=	Get-Date	-format	"yyyy-MM-dd"$folders	=	Get-ChildItem	-Path	$SourceFolder	-Directoryforeach	($folder	in	$folders)	{	$dirPath	=	$folder.FullName	$destinationPath	=	Join-Path	$DestinationFolder	"$($folder.Name)_$date.zip"	Compress-Archive	-Path	$dirPath	-CompressionLevel	'Fastest'	-
DestinationPath	$destinationPath}Write-Host	"Compressed!!"7.	Save	time	on	Unzipping	headacheTired	of	manually	extracting	files	from	multiple	zip	archives?	This	script	automates	the	process,	liberating	your	data	with	a	few	simple	commands.	For	each	zip	file	found,	the	script	will	expertly	extract	its	contents,	releasing	your	files	from	their
compressed	confines.#	Ask	the	user	for	the	source	directory	containing	the	zip	files$sourceDirectory	=	Read-Host	"Please	enter	the	source	folder	path"#	Ask	the	user	for	the	destination	directory	where	the	unzipped	files	will	be	placed$destinationDirectory	=	Read-Host	"Please	enter	the	destination	folder	path"#	Ensure	the	destination	directory
existsif	(-not	(Test-Path	-Path	$destinationDirectory))	{	New-Item	-ItemType	Directory	-Path	$destinationDirectory	|	Out-Null}#	Get	all	zip	files	from	the	source	directory$zipFiles	=	Get-ChildItem	-Path	$sourceDirectory	-Filter	*.zip	-Recurse#	Loop	through	each	zip	file	and	extract	it	to	the	destination	directoryforeach	($zipFile	in	$zipFiles)	{	#	Create
a	subfolder	in	the	destination	directory	with	the	same	name	as	the	zip	file	(without	extension)	$subfolder	=	Join-Path	-Path	$destinationDirectory	-ChildPath	$zipFile.BaseName	New-Item	-ItemType	Directory	-Path	$subfolder	-Force	|	Out-Null	#	Unzip	the	file	to	the	subfolder	Expand-Archive	-LiteralPath	$zipFile.FullName	-DestinationPath	$subfolder	-
Force}Write-Host	"All	files	have	been	unzipped	to	$destinationDirectory"8.	Add	Some	Daily	Surprise	to	Your	Desktop	with	This	Wallpaper-Shuffling	ScriptKeep	your	desktop	fresh	and	inspiring	with	this	PowerShell	script	that	automatically	picks	a	random	image	from	your	favorite	folder	and	sets	it	as	your	wallpaper.	schedule	this	to	run	once	everyday
and	get	a	daily	dose	of	visual	delight!#	Get	the	screen	dimensionsAdd-Type	-AssemblyName	System.Windows.Forms$screen	=	[System.Windows.Forms.Screen]::PrimaryScreen$screenWidth	=	$screen.Bounds.Width$screenHeight	=	$screen.Bounds.Height#	Add	the	C#	code	to	define	the	SystemParametersInfo	functionAdd-Type	-TypeDefinition
@"using	System;using	System.Runtime.InteropServices;public	class	WallpaperChanger	{	[DllImport("user32.dll",	CharSet	=	CharSet.Auto)]	public	static	extern	int	SystemParametersInfo(int	uAction,	int	uParam,	string	lpvParam,	int	fuWinIni);}"@#	Add	references	to	the	assemblies	that	contain	the	Screen	and	Graphics	classesAdd-Type	-
AssemblyName	System.Windows.FormsAdd-Type	-AssemblyName	System.Drawing#	Set	the	path	to	the	folder	containing	images$imageFolderPath	=	"C:\Users\UserName\Pictures\wallpapers"	#change	to	your	custom	path	with	your	images#	Get	all	image	files	in	the	folder$imageFiles	=	Get-ChildItem	-Path	$imageFolderPath	-Include
.jpg,.jpeg,*.png,*.bmp,*.gif	-Recurse	|	Where-Object	{	!$_.PSIsContainer	}#	Check	if	there	are	any	image	filesif	($imageFiles.Count	-gt	0)	{	#	Randomly	choose	an	image	$randomImage	=	Get-Random	-InputObject	$imageFiles	#	Get	the	screen	resolution	$screen	=	[System.Windows.Forms.Screen]::PrimaryScreen	$screenWidth	=
$screen.Bounds.Width	$screenHeight	=	$screen.Bounds.Height	#	Load	the	chosen	image	$image	=	[System.Drawing.Image]::FromFile($randomImage.FullName)	#	Create	a	new	Bitmap	object	with	the	screen	resolution	$resizedImage	=	New-Object	Drawing.Bitmap	$screenWidth,	$screenHeight	#	Create	a	graphics	object	from	the	bitmap	$graphics
=	[System.Drawing.Graphics]::FromImage($resizedImage)	#	Draw	the	image	onto	the	bitmap,	scaled	to	fit	the	screen	resolution	$graphics.DrawImage($image,	0,	0,	$screenWidth,	$screenHeight)	#	Save	the	bitmap	as	a	temporary	image	file	$tempImagePath	=	Join-Path	([IO.Path]::GetTempPath())	"wallpaper.bmp"
$resizedImage.Save($tempImagePath,	[System.Drawing.Imaging.ImageFormat]::Bmp)	#	Set	the	temporary	image	as	the	desktop	wallpaper	[WallpaperChanger]::SystemParametersInfo(20,	0,	$tempImagePath,	3)	Write-Host	"Desktop	wallpaper	set	to:	$($randomImage.FullName)"	#	Dispose	the	graphics	object	and	the	image	objects
$graphics.Dispose()	$image.Dispose()	$resizedImage.Dispose()}	else	{	Write-Host	"No	image	files	found	in	the	specified	folder."}9.	Harness	the	Power	of	Data	with	This	API-to-File	ScriptHarness	the	Power	of	Data	with	This	API-to-File	ScriptUnlock	the	wealth	of	information	residing	in	APIs	and	bring	it	offline	for	seamless	analysis	and	integration
with	this	versatile	PowerShell	script.	It	effortlessly	captures	JSON	responses	from	APIs	and	stores	them	both	as	JSON	files	for	future	use	and	as	Excel	files	for	convenient	analysis	and	manipulation.#	Import	the	moduleImport-Module	ImportExcel#	Ask	the	user	for	the	API	endpoint$apiEndpoint	=	Read-Host	"Enter	the	API	endpoint"#	Make	the	GET
request$response	=	Invoke-RestMethod	$apiEndpoint#	Ask	the	user	for	the	export	path	of	the	Excel	file$exportPath	=	Read-Host	"Enter	the	path	to	export	the	Excel	file"#	Export	the	data	to	an	Excel	file$response	|	Export-Excel	-Path	$exportPath	-AutoSize	-Show#	Ask	the	user	for	the	export	path	of	the	JSON	file$jsonExportPath	=	Read-Host	"Enter
the	path	to	export	the	JSON	file"#	Save	the	data	as	a	JSON	file$response	|	ConvertTo-Json	-Depth	100	|	Out-File	$jsonExportPathWrite-Host	"Data	exported	to	$exportPath	(Excel)	and	$jsonExportPath	(JSON)."10.	Hush	the	Boombox,	Save	Your	Eardrums:	the	Gentle	Volume	Minder!This	script	is	not	just	a	code	snippet;	its	a	shield	against	unexpected
decibel	disasters,	a	guardian	of	your	sonic	serenity.	So	unleash	your	inner	DJ	with	confidence,	knowing	your	audio	adventures	are	always	under	the	watchful	eye	of	your	automated	volume	tamer!Add-Type	-TypeDefinition	@"using	System.Runtime.InteropServices;[Guid("5CDF2C82-841E-4546-9722-0CF74078229A"),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]interface	IAudioEndpointVolume{	int	f();	int	g();	int	h();	int	i();	int	SetMasterVolumeLevelScalar(float	fLevel,	System.Guid	pguidEventContext);	int	j();	int	GetMasterVolumeLevelScalar(out	float	pfLevel);	int	k();	int	l();	int	m();	int	n();	int	SetMute([MarshalAs(UnmanagedType.Bool)]	bool	bMute,
System.Guid	pguidEventContext);	int	GetMute(out	bool	pbMute);}[Guid("D666063F-1587-4E43-81F1-B948E807363F"),	InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]interface	IMMDevice{	int	Activate(ref	System.Guid	id,	int	clsCtx,	int	activationParams,	out	IAudioEndpointVolume	aev);}[Guid("A95664D2-9614-4F35-A746-DE8DB63617E6"),
InterfaceType(ComInterfaceType.InterfaceIsIUnknown)]interface	IMMDeviceEnumerator{	int	f();	int	GetDefaultAudioEndpoint(int	dataFlow,	int	role,	out	IMMDevice	endpoint);}[ComImport,	Guid("BCDE0395-E52F-467C-8E3D-C4579291692E")]	class	MMDeviceEnumeratorComObject	{	}public	class	Audio{	static	IAudioEndpointVolume	Vol()	{	var
enumerator	=	new	MMDeviceEnumeratorComObject()	as	IMMDeviceEnumerator;	IMMDevice	dev	=	null;	Marshal.ThrowExceptionForHR(enumerator.GetDefaultAudioEndpoint(/*eRender*/	0,	/*eMultimedia*/	1,	out	dev));	IAudioEndpointVolume	epv	=	null;	var	epvid	=	typeof(IAudioEndpointVolume).GUID;
Marshal.ThrowExceptionForHR(dev.Activate(ref	epvid,	/*CLSCTX_ALL*/	23,	0,	out	epv));	return	epv;	}	public	static	float	Volume	{	get	{	float	v	=	-1;	Marshal.ThrowExceptionForHR(Vol().GetMasterVolumeLevelScalar(out	v));	return	v;	}	set	{	Marshal.ThrowExceptionForHR(Vol().SetMasterVolumeLevelScalar(value,	System.Guid.Empty));	}	}	public
static	bool	Mute	{	get	{	bool	mute;	Marshal.ThrowExceptionForHR(Vol().GetMute(out	mute));	return	mute;	}	set	{	Marshal.ThrowExceptionForHR(Vol().SetMute(value,	System.Guid.Empty));	}	}}"@function	Set-Volume([Parameter(Mandatory=$true)][ValidateRange(0,100)][Int]$percent)	{	try	{	#	Create	the	Windows	Shell	object.	$obj	=	New-Object
-ComObject	WScript.Shell	#	Lower	the	volume	if	it's	higher	than	the	specified	level.	do	{	$obj.SendKeys([char]174)	#	Volume	down	}	while	([Audio]::Volume	-gt	$percent/100)	#	Raise	the	volume	if	it's	lower	than	the	specified	level.	do	{	$obj.SendKeys([char]175)	#	Volume	up	}	while	([Audio]::Volume	-lt	$percent/100)	}	catch	{	"	Error	in	line
$($_.InvocationInfo.ScriptLineNumber):	$($Error[0])"	}}$checkIntervalMinutes	=	10	#set	this	to	your	desired	interval$highVolumeCount	=	0while	($true)	{	Start-Sleep	-Seconds	($checkIntervalMinutes	*	60)	#	Convert	minutes	to	seconds	$currentVolume	=	[Audio]::Volume	if	($currentVolume	-gt	0.7)	{	$highVolumeCount++	if	($highVolumeCount	-
ge	1)	{	#	Adjusted	to	1	for	10	minutes	interval	Set-Volume	-percent	60	#Set	this	to	your	desired	volume	to	reduce	$highVolumeCount	=	0	}	}	else	{	$highVolumeCount	=	0	}}HAPPY	AUTOMATION!Skip	to	contentJordan	Hammond|Updated	November	20,	2024System	administrators	love	a	good	shortcut,	especially	when	it	comes	to	alleviating	the
aggravation	that	comes	with	managing	computers,	solving	user	issues,	and	putting	out	fires	around	the	office.	Enter	PowerShell.Though	theres	a	wide	variety	of	great	scripting	languages	out	there,	it	doesn't	get	much	better	than	the	PowerShell	scripting	language.	And	now,	it	can	run	across	platforms,	making	it	a	useful	tool	no	matter	the
environment	you	find	yourself	working	in.	Sysadmins	have	too	much	on	their	plates,	so	task	automation	is	becoming	mandatory.	No	better	place	to	start	learning	PowerShell	starting	from	the	basics.PowerShell	saves	scripts	in	the	.ps1	format.	Feel	free	to	use	your	own	custom	folder	and	file	names.	For	our	demonstration,	we	created	both	a	file	and	a
folder:C:\Scripts\My	First	Script.ps1Create	the	new	PowerShell	script	file,	and	add	the	Write-Host	cmdlet	(cmdlet	is	another	word	for	a	PowerShell	command).Write-Host	"Hello,	World!"Save	your	.ps1	script	file,	and	return	to	the	PowerShell	window.	When	running	PowerShell	scripts,	the	most	common	method	is	to	call	it	in	the	PowerShell	terminal.
(You	can	also	use	the	PowerShell	ISE	or	VS	CodeVS	Code.)&	"C:\Scripts\My	First	Script.ps1"Go	ahead	and	try	that	command.	You	should	get	an	error	that	says	scripts	are	disabled	on	your	system.	This	is	for	security	reasons.In	order	to	prevent	malicious	scripts	from	running	on	your	system,	PowerShell	enforces	an	execution	policy.	To	use	our	newly
created	script,	we	have	to	modify	our	execution	policy	to	allow	our	PowerShell	example	script	to	run.	There	are	four	execution	policies:Since	we	have	not	digitally	signed	our	new	PowerShell	example	script,	our	options	for	the	execution	policy	are	limited	to	RemoteSigned	and	Unrestricted.	We	are	going	to	change	it	to	RemoteSigned.To	change	the
execution	policy,	open	PowerShell	as	an	administrator	(the	command	fails	otherwise),	and	run	the	following	command:Set-ExecutionPolicy	RemoteSignedThe	Set-ExecutionPolicy	cmdlet	asks	to	verify	that	you	really	want	to	change	the	script	execution	policy.	Go	ahead	and	select	Y	for	yes,	then	close	and	reopen	your	PowerShell	window.After
restarting	the	PowerShell	window,	try	running	your	.ps1	script	again.&	"C:\Scripts\My	First	Script.ps1"It	should	write	back,	"Hello,	World!"	to	the	Windows	PowerShell	console:Congratulations	you	just	wrote	your	first	PowerShell	script!	Easily	run	PowerShell	scripts	on	remote	devicesNeed	to	run	your	awesome	PowerShell	scripts	on	remote	devices?
PDQ	Connect	can	easily	execute	PowerShell	scripts	on	any	managed	device	with	an	active	internet	connection.When	looking	for	ideas	on	what	you	can	do	with	beginner	scripts,	just	think	about	things	you	need	to	do	manually	and	see	if	can	grab	the	information.	One	good	quick	win	is	checking	the	ACL	of	file	share:Get-Acl	"\\fileshare\folder"	|	Select-
Object	-ExpandProperty	AccessOr	try	clearing	out	a	temp	folder	that	is	taking	up	space	with	unneeded	documents:Get-ChildItem	C:\temp	|	Remove-ItemOr	test	if	a	registry	key	is	on	a	machine:	Get-ItemProperty	-Path	"HKLM:\SOFTWARE\Admin	Arsenal\PDQ	Deploy"Those	are	all	quick	wins	that	you	can	grab	out	of	the	box.	The	entire	world	opens
once	you	dive	into	PowerShell	modules	and	start	with	scripts	against	critical	systems,	like	Azure,	VMWare,	AWS,	or	Active	Directory.Learn	PowerShell	with	the	prosEven	the	most	experienced	PowerShell	aficionados	are	constantly	learning.	Ready	to	dive	into	more	advanced	functions?	Check	out	The	PowerShell	Podcast	to	learn	more	about	key
people,	resources,	and	modules.	You	now	have	the	amazing	power	to	create	and	run	your	own	scripts	and	cmdlets.	Jordan	HammondJordan	had	spent	his	life	wondering	why	tasks	he	didnt	like	to	do	had	no	options	to	complete	themselves.	Eventually	he	had	to	make	that	happen	on	his	own.	It	turned	out	that	he	enjoyed	making	tasks	complete
themselves,	and	PDQ	thought	that	is	something	he	should	talk	about	on	the	internet.	Automating	daily	tasks,	extracting	information	from	systems,	or	managing	Microsoft	365?	PowerShell	scripts	really	make	your	daily	work	a	lot	easier.	When	you	are	working	in	IT	then	you	cant	get	around	PowerShell.	PowerShell	is	an	advanced	command	line
interface	(CLI)	and	scripting	language	that	can	be	used	on	Windows,	Linux,	and	macOS.	With	the	help	of	cmdlets,	we	can	perform	tasks	like	retrieving	users	from	the	Active	Directory	or	testing	the	network	connection	of	a	server.	We	can	combine	these	tasks	and	processes	into	scripts	that	we	can	quickly	run	on	multiple	computers	or	schedule	as	a
daily	task.	In	this	article,	I	will	explain	how	you	can	create	your	own	PowerShell	Scripts.	Which	tools	you	can	use,	how	to	format	your	scripts	and	some	general	tips	to	get	started.	At	the	end	of	the	article,	you	will	also	find	a	template	you	can	use	for	your	scripts.	Most	people	that	start	writing	PowerShell	scripts	use	a	simple	notepad	tool,	like
Notepad++.	It	works	for	small	scripts,	but	a	good	editor	makes	writing	PowerShell	scripts	much	easier.	They	come	with	syntax	highlighting,	autocomplete	functions,	error	detection,	etc.	And	what	I	like	the	most	is	that	you	can	create	a	project,	allowing	you	to	quickly	switch	between	files,	and	keep	your	files	organized.	For	PowerShell,	one	of	the	best
free	editors	to	start	with	is	Visual	Studio	Code.	This	editor,	from	Microsoft,	is	completely	free	and	can	be	used	on	Windows,	Linux,	and	macOS.	To	use	the	editor	with	PowerShell,	you	will	need	to	install	a	plugin	(extension).	First,	install	the	Visual	Studio	Code	using	the	installer.	Simply	click	next	on	all	screens.	Click	on	Extensions	Search	for
PowerShell	Install	the	PowerShell	extension	from	Microsoft	PowerShell	Editor	Visual	Studio	Code	To	create	our	first	PowerShell	script	we	will	need	to	create	a	new	file.	To	keep	organized,	we	will	create	a	new	folder	scripts	where	we	are	going	to	store	our	files.	In	Visual	Studio	Code:	Open	the	Explorer	Choose	Open	Folder	Create	a	new	folder,
scripts,	in	your	OneDrive	for	example	Click	Select	Folder	You	will	get	a	prompt	if	you	trust	the	files	in	this	folder,	make	sure	you	check	Trust	the	authors	of	all	files	in	the	parent	folder	and	click	Yes,	I	Trust	the	authors.	To	create	a	new	file,	right-click	in	the	editor	(or	click	on	the	New	file	icon)	and	create	your	first	PowerShell	script.	You	can	also
create	a	subfolder	to	keep	your	scripts	organized	of	course.	Before	we	start	writing	our	PowerShell	script,	its	good	to	know	how	you	can	run	or	test	your	scripts.	One	of	the	common	issues,	when	you	try	to	run	your	script,	is	the	error	Running	scripts	is	disabled	on	this	system.	To	solve	this	we	will	have	to	change	the	execution	permission	on	your
Windows	10	or	11	computer.	Open	PowerShell	and	type	the	command	below	to	change	the	execution	policy.	Read	more	about	the	PowerShell	execution	policy	in	this	article.	Set-ExecutionPolicy	-ExecutionPolicy	RemoteSigned#	Verify	the	setting	withGet-ExecutionPolicyWith	the	execution	policy	set,	we	can	run	our	scripts	without	any	permissions
errors.	Now	there	are	multiple	options	to	run	a	PowerShell	script,	read	more	about	them	in	this	article,	but	for	this	guide,	we	will	focus	on	the	following	two:	Using	the	built-in	terminal	in	Visual	Studio	Code	Run	the	script	in	PowerShell	One	of	the	advantages	when	using	Visual	Studio	Code	as	an	editor	for	your	PowerShell	scripts	is	that	you	can	test
and	run	your	scripts	in	the	built-in	terminal.	You	can	run	the	whole	script	by	pressing	F5	or	run	a	selection	of	lines	by	pressing	F8.	Running	PowerShell	code	Another	method	is	using	PowerShell	itself	to	run	your	script.	Open	Windows	PowerShell	or	Windows	Terminal	(right-click	on	Start)	and	navigate	to	the	folder	where	your	script	is	saved.	Type	the
filename	of	your	script	and	press	enter.	Using	Windows	Terminal	In	the	command	prompt,	we	have	commands,	which	are	built-in	functions	(commands)	that	perform	a	task.	For	example,	if	you	type	hostname	in	the	command	prompt,	it	will	show	your	computer	name.	Or	the	command	dir	will	list	the	contents	of	the	current	directory.	Command	Prompt
commandsIn	PowerShell,	we	have	command-lets	(cmdlets).	You	can	recognize	a	cmdlet	by	its	naming	because	it	exists	of	a	Verb-Noun	pair.	This	naming	convention	helps	you	to	understand	what	a	particular	cmdlet	does.	NoteIn	some	examples	below	I	am	using	cmdlets	from	the	Active	Directory	module.	Make	sure	that	you	have	the	module	installed	if
you	want	to	follow	the	steps.	Run	the	following	command	to	install	the	module:Add-WindowsCapability	online	Name	Rsat.ActiveDirectory.DS-LDS.Tools~~~~0.0.1.0	For	example,	the	Get-ComputerInfo	cmdlet	gets	all	the	computer	information	from	your	computer.	To	show	the	contents	of	a	folder,	we	can	use	Get-ChildItem,	for	example.	Besides	the
built-in	cmdlets,	you	can	also	install	modules	in	PowerShell.	These	modules	can,	for	example,	be	used	to	work	with	Exchange	Online	or	Azure	AD.	Each	module	comes	with	its	own	cmdlets	for	its	specific	task.	PowerShell	Cheat	SheetMake	sure	that	you	also	checkout	and	download	the	PowerShell	Cheat	Sheet	The	are	a	lot	of	approved	verbs	that	you
can	use	when	you	are	creating	your	own	PowerShell	commands	or	functions.	But	the	most	common	verbs	that	you	will	come	across	are:	VerbActionExampleAddAdds	or	appends	are	resources	to	another	itemAdd-MailboxPermissionClearRemoves	all	resources	from	a	container,	but	doesnt	delete	the	containerClear-HostConnectMakes	a	connection	to
another	systemConnect-AzureADDisconnectBreak	the	connection	with	the	other	systemDisconnect-AzureADGetRetrieves	data	from	a	resourceGet-ChildItemNewCreates	a	new	resourceNew-MailboxRemoveRemove	a	resource	from	a	containerRemove-MailboxSetReplaces	data	in	an	existing	resourceSet-MailboxSelectSelects	a	resource	in	a
containerSelect-ObjectPowerShell	Verbs	When	writing	scripts	you	will	often	need	to	store	data	temporarily,	so	you	can	use	it	later	in	your	script.	For	this	we	use	variables.	In	PowerShell	we	dont	need	to	initialize	the	variables,	we	can	just	create	them	when	needed.	Variables	can	not	only	store	data,	like	strings,	and	integers,	but	also	the	complete
output	of	cmdlets.	Lets	start	with	a	simple	example,	we	take	the	Get-Computer	cmdlet	from	before.	The	cmdlet	returns	your	computer	name:	NoteThe	contents	after	the	#	in	a	PowerShell	script	is	a	comment.	Comments	are	used	to	explain	what	a	functions	does	and	to	make	your	code	more	reable.	hostname#	ResultLazyBookWe	dont	want	to	just
show	the	computer	name,	but	instead,	we	want	to	include	the	computer	name	inside	a	nice	string.	In	this	case,	we	can	first	store	the	result	of	the	Get-Computername	cmdlet	into	a	variable,	which	we	will	call	computername.	And	then	include	this	variable	inside	the	string:	#	Store	computer	name	inside	the	variable$computername	=	hostname#
Include	the	variable	inside	the	stringWrite-Host	"The	name	of	your	computer	is	$computername"#	ResultThe	name	of	your	computer	is	LazyBookIn	PowerShell,	we	can	use	comparison	operators	to	compare	or	find	matching	values.	By	default,	the	operators	are	case-insensitive,	but	you	can	pace	a	c	before	an	operator	to	make	it	case-sensitive.	For
example:	'lazyadmin'	-eq	'LazyAdmin'#	ResultTrue'lazyadmin'	-ceq	'LazyAdmin'#	ResultFalseThe	operators	that	we	can	use	in	PowerShell	are:	OperatorCounter-Part	operatorDescription-eq-neEqual	or	not	equal-gt-ltGreater	or	less	than-geGreat	than	or	equal	to-leLess	than	or	equal	to-Like-NotLikeMatch	a	string	using	*	wildcard	or	not-Match-
NotMatchMatches	or	not	the	specified	regular	expression-Contains-NotContainsCollection	contains	a	specified	value	or	not-In-NotInSpecified	value	in	collection	or	not-ReplaceReplace	specified	valuePowerShell	Operators	We	can	use	these	operators	in	combination	with	for	example	If-Else	statements.	If	statements	allow	us	to	check	if	a	particular
comparison	is	true	or	not.	Depending	on	the	outcome	we	can	execute	a	piece	of	code	or	skip	to	another	part.	Lets	take	the	computer	name	example	again.	We	have	stored	the	computer	name	inside	the	variable.	Now	lets	check	if	the	computers	name	is	my	laptop:	$computername	=	hostname#	Check	if	the	computer	name	equal	LazyBookif
($computername	-eq	'LazyBook')	{	Write-Host	"This	computer	is	from	LazyAdmin"}else{	Write-host	"This	is	someone	else's	computer"}Our	computer	names	start	with	LT	for	laptops	and	PC	for	desktops.	So	we	could	determine	if	the	device	is	a	laptop	or	not	based	on	the	computer	name.	For	this,	we	are	going	to	use	an	if	statement	with	an	-like
operator.	The	like	operator	accepts	a	wildcard,	so	we	can,	for	example,	check	if	a	string	starts	with	LT	in	this	case	$computername	=	hostname#	Or	better	is$computername	=	$env:COMPUTERNAME#	Check	if	the	computer	name	start	with	Lazyif	($computername	-like	'Lazy*')	{	Write-Host	"This	is	a	laptop"}else{	Write-host	"This	is	something
else"}	Besides	variables,	there	is	another	way	to	pass	data	through	to	another	cmdlet	in	PowerShell,	which	is	using	the	pipeline	operator	|	.	The	pipeline	operator	passes	the	results	of	the	command	to	the	next	command.	The	most	common	example	of	piping	is	formating	or	selecting	the	result	of	a	cmdlet.	Lets	take	the	following	example,	the	cmdlet
Get-NetIPAddress	returns	the	IP	Address	configuration	of	all	your	network	interfaces.	By	default,	it	will	return	the	results	in	a	list	format	Get-NetIPAddress	To	make	the	results	more	readable	we	can	format	the	results	into	a	tablet	or	select	only	the	properties	that	we	need.	We	do	this	by	piping	the	cmdlet	format-table	(ft)	behind	it	or	the	cmdlet
select-object	(select):	Get-NetIPAddress	|	FT#	Or	select	the	fieldsGet-NetIPAddress	|	Select	InterfaceAlias,	IPAddress,	PrefixOrigin	Now,	this	is	a	simple	example	of	piping	cmdlets.	But	lets	take	a	look	at	a	more	advanced	use	of	piping	cmdlets.	We	are	going	to	collect	all	user	mailboxes,	from	each	mailbox	we	are	going	to	look	up	the	mailbox	statistics,
select	only	the	fields	that	we	need,	and	export	the	results	to	a	CSV	file.	Without	the	pipe	operator,	we	would	need	to	write	a	code	similar	to	this:	NoteGet-EXOMailbox	cmdlet	is	part	of	the	Exchange	Online	module.	Make	sure	that	you	have	installed	it	if	you	want	to	follow	the	steps	below.	$mailboxes	=	Get-EXOMailbox	-RecipientTypeDetails
UserMailbox$mailboxes.ForEach({	$Mailboxstats	=	Get-EXOMailboxStatistics	-Identity	$_.Identity	$fields	=	Select-Object	-InputObject	$Mailboxstats	-Property	DisplayName,ItemCount,TotalItemSize	Export-CSV	-InputObject	$fields	-Path	c:\temp\file.csv	-Append})But	with	piping	in	PowerShell	we	can	simply	do	the	following:	Get-EXOMailbox	-
RecipientTypeDetails	UserMailbox	|	Get-EXOMailboxStatistics	|	Select	DisplayName,	ItemCount,	TotalItemSize	|	Export-CSV	c:\temp\filename.csv	Arrays	and	hashtables	can	be	used	to	store	a	collection	of	data.	Hashtables	use	a	key	value	principle	where	you	need	to	define	the	key	before	you	can	store	the	value.	Arrays	use	an	automatically	generated
index	to	store	the	values.	To	create	an	array	we	can	simply	assign	multiple	values	to	a	variable,	separating	each	of	them	with	a	common.	For	example:	#	Create	an	array	of	fruits$array	=	'apple','raspberry','kiwi'	Another	option	is	to	first	initialize	the	array	and	add	values	to	the	array	later	on.	To	create	an	empty	array	we	will	use	the	@	symbol
followed	by	parentheses:	#	Create	an	empty	array$fruits	=	@()#	Add	content	to	the	array$fruits	+=	"apple"	Hashtables	are	also	known	as	associative	arrays,	they	are	used	when	you	need	t	store	data	in	a	more	structured	manner.	Instead	of	a	numbered	index,	its	based	on	a	key-value	pair,	where	you	need	to	define	the	key	yourself.	To	create	an	empty
hashtable	you	will	need	to	use	curly	brackets	and	the	@	symbol:	#	Create	empty	hashtable$hashTable	=	@{}You	could	for	example	use	a	hashtable	to	store	the	server	IP	Addresses	$serverIps=	@{	'la-srv-lab02'	=	'192.168.10.2'	'la-srv-db01'	=	'192.168.10.100'}#	ResultName	Value----	-----la-srv-lab02	192.168.10.2la-srv-db01	192.168.10.100Or	as	a
config	file	inside	your	script:	$mail	=	@{	SmtpServer	=	'smtp.contoso.com'	To	=	'johndoe@lazyadmin.nl'	From	=	'info@contoso.com'	Subject	=	'super	long	subject	goes	here'	Body	=	'Test	email	from	PowerShell'	Priority	=	High}	Looping	through	data	is	one	of	the	common	tasks	in	any	scripting	language.	ForEach	loops	allow	you	to	go	through	each
item	in	a	collection	and	do	something	with	that	item.	For	example,	we	take	the	array	of	fruits	and	write	each	item	(fruit)	to	the	console:	$fruits	=	@('apple','pear','banana','lemon','lime','mango')#	Foreach	blockForeach	($fruit	in	$fruits)	{	Write-Host	$fruit;}#	Shorthand$fruits.foreach({	Write-Host	$_;})	In	the	example	above	we	only	used	a	simple
array,	but	you	can	also	use	ForEach	on	objects.	Inside	the	ForEach	block	you	can	access	each	property	of	the	object,	for	example,	if	we	get	all	the	mailboxes,	we	can	access	the	display	name	as	follows:	$mailboxes	=	Get-EXOMailbox	-RecipientTypeDetails	UserMailbox$mailboxes.ForEach({	#	Write	the	displayname	of	each	mailbox	Write-host
$_.DisplayName})	Besides	ForEach	loops,	we	can	also	use	While	and	Do-While	loops.	A	while	loop	will	only	run	when	a	condition	is	met,	the	Do-While	always	runs	once	and	as	long	as	the	condition	is	true.	#	Do	While	loopDo	{	Write-Host	"Online"	Start-Sleep	5}While	(Test-Connection	-ComputerName	8.8.8.8	-Quiet	-Count	1)Write-Host	"Offline"#
While	loop$i	=	0;$path	=	"C:\temp"While	($i	-lt	10)	{	#	Do	Something	$newFile	=	"$path\while_test_file_"	+	$i	+	".txt";	New-Item	$newFile	$i++;}	Learn	more	about	For	loops,	ForEach	statements,	and	Do	While	loops	in	this	article.	Try-catch	blocks	are	used	to	handle	errors	in	a	proper	way.	Normally	when	a	function	doesnt	work	or	runs	into	an
error,	the	script	will	simply	stop	and	throw	an	error.	Sometimes	this	is	fine,	but	on	other	occasions,	you	might	want	to	show	a	more	readable	error	or	simply	continue.	For	example,	when	you	are	updating	multiple	users	in	the	Active	Directory	using	a	ForEach	loop.	When	one	of	the	user	accounts	doesnt	exist,	the	script	will	run	into	an	error	and	stop.
But	a	better	solution	would	be	if	the	script	outputs	the	name	of	the	users	it	didnt	update	and	just	continues	with	the	next	one.	This	is	where	Try-Catch	blocks	come	in.	Taking	the	example	above,	the	following	code	block	will	try	to	find	and	update	the	Azure	AD	user,	if	an	error	occurs	in	the	Try	block,	then	the	Catch	part	will	show	an	error.
$users.ForEach{	Try{	#	Find	the	user	to	update	$ADUser	=	Get-AzureAdUser	-SearchString	$_.name	#	Update	the	job	title	Set-AzureAdUser	-ObjectId	$ADUser.ObjectId	-JobTitle	$_.jobtitle	}	Catch{	Write-Host	("Failed	to	update	"	+	$($_.name))	-ForegroundColor	Red	}}	Now,	this	is	a	basic	implementation	of	a	try-catch	block,	its	even	possible	to
use	multiple	catch	blocks	on	a	single	Try	statement,	allowing	you	to	catch	different	errors.	Read	more	about	Try-Catch	blocks	in	this	in-depth	article.	You	should	now	have	a	brief	understanding	of	what	tools	you	can	use	in	PowerShell	to	create	scripts.	So	lets	take	a	look	at	how	we	combine	this	into	true	PowerShell	scripts.	For	the	examples	below	we
are	going	to	create	a	small	script	that	creates	test	files	in	a	given	folder.	Below	you	will	find	the	basic	principle	of	the	script.	We	have	a	path,	hardcoded	in	the	script,	an	array	with	the	numbers	1	to	10,	and	a	ForEach	loop.	With	the	examples	below	we	are	going	to	enhance	this	script	to	a	true	PowerShell	script.	$path	=	"C:\temp"1..10	|	ForEach-
Object	{	$newFile	=	"$path\test_file_$_.txt";	New-Item	$newFile}	When	creating	PowerShell	scripts	its	always	a	good	idea	to	add	documentation	to	your	script.	The	documentation	is	placed	at	the	top	of	your	script	in	a	comment	block	and	describes	what	the	script	does,	a	couple	of	examples	on	how	to	use	the	script,	and	a	notes	block	with	the	author,
version,	date,	etc.	So	for	our	test	file	script,	we	can	add	the	following	description	at	the	beginning	of	our	file:

