
	

https://jovabizudafoge.nurepikis.com/313221509120774193781156144471318428714856?wunefavojujudasavuzaritudejogi=dibujudetakomopefobozigosediwizolanivojupagajorewetavipekafizovuxenevewixupawupozitetejowexinutarotapazuranaxokapudujavutanokimumuzobikimixikitifipewalerixagajokewafitexozixubulalukimarirodapuxerupinaleba&utm_term=core+data+explained&vogepudasokufodikitixanufutopufupaludapelifemenetizilixasipuzujozogufojisadojiviwajazuvumavi=nelewetixafasemebulepotirubosusatisinabasipekaxifatevixetevegesatukaxebegodojurokirudujularagapewugabarebuwuperepetinazitovurulukololekevafijupa

Skip	to	content	Sign	up	now	and	upgrade	anytime.	All	of	our	plans	include	unlimited	app	installs,	unlimited	app	users	and	sessions	and	enterprise-grade	encryption.	Save	30%	with	Yearly	plans!	Prices	shown	in:	EUR	()	USD	($)	Get,	reproduce,	and	fix	bugs	faster	than	ever	at	any	stage	of	development.	FREE	100K	Daily	Log	Lines	24	hour	Log
Retention	2,000	Devices	Unlimited	Team	Members	Unlimited	Apps	Summary	Email	Daily	For	startups	caring	about	the	quality	of	their	apps.	From	49	/month	1M	Daily	Log	Lines	7-day	Log	Retention	Unlimited	Devices	All	Free	Plan	Features	Crash	Reporting	User	Feedback	Collection	GDPR	DPA	Basic	Permissions	For	agencies	and	product	companies.
From	89	/month	1M	Daily	Log	Lines	30-day	Log	Retention	All	Basic	Plan	Features	Fine-Grained	Permissions	Log	Achiving	to	S3	Bucket	API	Access	Webhooks	Elastic	Search	Integration	For	companies	with	enterprise-grade	requirements.	From	399	/month	Custom	Volume	30-Day	Log	Retention	All	Pro	Plan	features	Priority	Support,	including	legal	and
compliance	99.95%	uptime	SLA	on	dashboard	SSO	with	SAML	Purchase	Order	Billing	Payment	via	bank	transfer	And	more...	It	is	possible	to	purchase	Bugfender	to	use	on	your	own	servers,	see	the	On-Premises	pricing	page.	If	you	have	any	special	requirements,	we'll	be	happy	to	help	create	the	perfect	package	for	you.	This	could	include:	Unlimited
storage,	apps,	and	log	lines	Corporate	private	cloud,	or	installation	on	a	dedicated	server	On-premises	license	and	support	Geographic	location	of	your	servers	Custom	retention	or	backup	policies	Custom	encryption	needs	Custom	API	and	webhooks	Custom	terms	and	conditions,	premium	support,	and	Service	Level	Agreements	Integration	with	your
(non-SAML)	Single	Sign-On	system:	OIDC,	LDAP,	CAS	or	similar	If	you're	interested	in	a	custom	plan	or	have	any	questions,	get	in	touch.	You	can	record	up	to	100,000	log	lines	every	day	which	are	retained	for	24	hours.	We	accept	all	major	credit	cards	including	Visa,	Mastercard,	Discover,	and	American	Express.	For	Enterprise	plans,	we	can	also
accept	payments	via	PayPal	or	wire	transfer	-	just	get	in	touch.	Contact	Us	It	is	possible	to	purchase	Bugfender	to	use	on	your	own	servers,	see	the	On-Premises	pricing	page.	Learn	More	Looking	for	a	pdf	with	Bugfender's	info	and	pricing?	Download	one	here.	Download	Premium	plans	have	an	SLA	of	99.95%	monthly	uptime	on	the	provided	service
and	8	business	hours	initial	response	time	on	support	(Monday	to	Friday,	9	to	5	UTC).	In	the	event	of	violation,	compensation	is	provided	in	form	of	a	discount	applicable	on	the	next	purchase	for	24	times	the	time	in	violation.	Other	plans	do	not	have	an	SLA,	but	we	make	an	effort	to	respond	to	all	support	tickets	within	24	hours.	Feel	free	to	reach	out
for	custom	support	plans.	Contact	Us	Don't	wait	for	crashes	to	happen.	Use	Bugfender	to	get	constant	insights	from	every	single	user	device	anywhere	in	the	world,	so	you	can	see	the	bug	coming	and	fix	it	first.	No	credit	card	required	Free	forever	5	minutes	setup	Core	Data	is	an	essential	framework	in	iOS	development	that	allows	developers	to
manage	and	persist	data	efficiently	in	their	apps.	Whether	you're	creating	a	simple	note-taking	app	or	a	more	complex	social	media	platform,	understanding	Core	Data	can	help	you	manage,	save,	and	retrieve	your	apps	data	seamlessly.	In	this	article,	well	explore	what	Core	Data	is,	why	its	valuable,	and	when	to	use	it	in	your	iOS	projects.	Core	Data	is
an	object	graph	and	persistence	framework	developed	by	Apple.	It	helps	developers	organize	and	store	data	locally	on	an	iPhone	or	iPad.	At	its	core,	Core	Data	allows	you	to	define	a	data	model,	create	entities	(similar	to	tables	in	a	database),	and	manage	their	relationships.	It	can	also	manage	the	lifecycle	of	these	entities	and	provide	powerful	tools
for	fetching,	updating,	and	deleting	data.	There	are	several	reasons	why	Core	Data	is	a	preferred	choice	for	local	data	management:	Data	Persistence:	Core	Data	allows	you	to	store	data	on	the	device,	so	it	remains	available	even	after	the	app	is	closed.	Data	Relationships:	You	can	model	relationships	between	objects,	like	users	and	posts	in	a	social
app.	Efficient	Data	Access:	Core	Data	is	optimized	for	performance	and	can	efficiently	fetch	and	manage	large	datasets.	Change	Tracking:	Core	Data	tracks	changes	in	your	data,	making	it	easier	to	manage	updates.	Data	Versioning:	Core	Data	supports	data	migrations,	making	it	possible	to	evolve	your	data	model	as	your	app	grows.	Core	Data	is	not
always	the	best	solution	for	every	app.	It's	most	useful	in	situations	where	you	need	to	manage	complex	data	relationships,	persist	large	amounts	of	data,	or	use	advanced	querying	capabilities.	However,	if	your	app	just	needs	to	store	small	pieces	of	data,	like	user	preferences,	UserDefaults	or	even	saving	to	files	might	be	simpler	alternatives.	Some
situations	where	Core	Data	is	a	good	fit:	Managing	large	datasets	(e.g.,	a	to-do	list	app,	social	media	app).	Handling	complex	relationships	between	data	(e.g.,	a	user	has	multiple	posts,	posts	have	multiple	comments).	Needing	to	query	data	efficiently	with	filtering	and	sorting.	Persisting	data	over	multiple	app	launches	or	across	multiple	users.	At	a
high	level,	Core	Data	works	by	creating	a	data	model	(which	is	a	blueprint	of	the	data	you	want	to	store)	and	managing	instances	of	these	models	(referred	to	as	managed	objects).	These	managed	objects	are	instances	of	your	data	entities,	and	Core	Data	automatically	takes	care	of	storing,	fetching,	and	updating	them.	Lets	break	down	the	basic
components	of	Core	Data:	Data	Model:	This	is	a	schema	that	defines	your	entities	(similar	to	tables	in	a	database),	their	attributes,	and	relationships.	NSManagedObject:	This	is	a	class	that	represents	a	single	instance	of	an	entity.	For	example,	if	you	have	a	"Task"	entity,	each	task	you	create	in	your	app	will	be	an	instance	of	NSManagedObject.
NSManagedObjectContext:	Think	of	this	as	a	workspace	where	you	perform	operations	like	saving,	deleting,	or	fetching	data.	Persistent	Store:	This	is	where	your	data	is	physically	saved	on	the	device.	It	can	be	a	SQLite	database,	XML	file,	or	binary	file.	NSPersistentContainer:	This	is	a	helper	class	that	sets	up	the	Core	Data	stack	and	provides	you
with	a	ready-to-use	managed	object	context.	Lets	go	through	a	basic	example	where	we	create	a	"Task"	entity	and	store	it	in	Core	Data.	Well	then	fetch	and	display	the	tasks	saved	in	the	app.	To	enable	Core	Data	in	your	project:	When	creating	a	new	project	in	Xcode,	select	the	"Use	Core	Data"	checkbox.	Xcode	automatically	generates	a	data	model
file	(with	a	.xcdatamodeld	extension)	and	sets	up	the	Core	Data	stack	for	you.	Next,	we	define	a	simple	"Task"	entity	with	a	single	attribute	called	"name"	in	the	Data	Model	Editor.	You	can	open	the	.xcdatamodeld	file,	add	a	new	entity	called	"Task,"	and	give	it	an	attribute	called	"name"	of	type	String.	Heres	how	you	can	add	a	task	to	Core	Data:	Now
lets	retrieve	all	the	tasks	weve	saved:	Core	Data	is	a	powerful	tool	for	persisting	and	managing	data	in	iOS	apps.	By	understanding	the	basics	of	how	it	works,	you	can	start	using	it	in	your	projects	to	store	and	retrieve	data	efficiently.	In	this	series,	we	will	delve	deeper	into	the	Core	Data	stack,	relationships,	performance	optimization,	and	more
advanced	concepts.	In	this	article,	we	covered	the	basics	of	what	Core	Data	is	and	why	its	useful	for	managing	and	persisting	data	in	iOS	applications.	We	also	walked	through	a	simple	example	of	setting	up	Core	Data	and	performing	basic	CRUD	operations.	In	the	next	article,	we'll	dive	deeper	into	setting	up	Core	Data	in	your	projects	and	the
structure	of	the	Core	Data	stack.	In	the	previous	article,	Mastering	Relationships	in	Core	Data:	Fundamentals	we	explored	the	basic	concepts	and	principles	of	relationships	in	Core	Data.	Building	on	that	foundation,	this	article	aims	to	share	practical	experience	and	techniques	for	handling	relationships	in	Core	Data.	The	goal	is	to	assist	developers	in
more	effectively	utilizing	the	relational	features	of	the	Core	Data	framework,	thereby	enhancing	development	flexibility	and	efficiency.This	article	is	intended	for	readers	who	already	have	some	knowledge	and	practical	experience	with	Core	Data	relationships,	providing	an	advanced	understanding	and	application	perspective,	rather	than	offering	a
comprehensive	tutorial.OptionalWhen	defining	entity	attributes	in	the	Xcode	model	editor,	developers	should	differentiate	between	the	Optional	option	in	the	editor	and	the	Optional	type	in	Swift,	as	they	are	not	the	same.	In	Core	Data,	the	Optional	option	means	that	the	corresponding	SQLite	field	can	accept	NULL	values.	In	contrast,	the	Optional
type	in	Swift	is	a	language-level	feature	that	indicates	a	variable	can	be	nil.	In	Core	Data	models,	the	use	of	these	two	types	of	Optional	depends	on	the	specific	scenario	and	the	developers	needs,	and	they	do	not	necessarily	correspond	directly.In	Core	Data,	if	an	attribute	of	a	model	is	marked	as	Optional,	it	can	be	defined	as	Non-Optional	in	the
corresponding	Swift	code.	This	approach	offers	more	flexibility,	allowing	developers	to	decide	whether	to	use	Swifts	Optional	type	in	the	code	based	on	the	actual	application	context.For	more	detailed	information	on	the	Optional	values	in	Core	Data,	please	read	Ask	Apple	2022	Q&A	Related	on	Core	Data	(Part	2).For	instance,	consider	Item	and	Tag,
two	entities	with	a	One-to-One	relationship.	When	using	Core	Data	with	CloudKit,	these	relationships	must	be	marked	as	Optional	in	the	model	editor.	However,	in	practical	application,	if	these	two	entity	instances	are	always	related	to	each	other,	meaning	their	relationship	always	has	a	value,	they	can	be	adjusted	to	be	non-optional	in	the	Swift	code.
The	benefit	of	this	adjustment	is	more	convenient	access	to	these	properties	in	the	code,	eliminating	the	need	for	frequent	unwrapping.	The	default	code	generated	by	Core	Data	is	as	follows:	extension	Item	{	@NSManaged	public	var	timestamp:	Date?	@NSManaged	public	var	tag:	Tag?	//	Optional}extension	Tag	{	@NSManaged	public	var	name:
String?	@NSManaged	public	var	item:	Item?	//	Optional}However,	you	can	adjust	them	to	be	non-optional	based	on	the	actual	situation:	extension	Item	{	@NSManaged	public	var	timestamp:	Date	@NSManaged	public	var	tag:	Tag	//	Non-Optional}extension	Tag	{	@NSManaged	public	var	name:	String	//	None-Optional	@NSManaged	public	var	item:
Item	//	Non-Optional}This	allows	for	more	convenient	data	retrieval	in	the	code,	provided	that	developers	ensure	that	the	properties	have	been	assigned	values	before	they	are	accessed:	Text(item.tag.name)Swiftifying	Core	Data	Collection	TypesWhen	dealing	with	to-Many	relationships	in	Core	Data,	especially	those	involving	ordered	relationships,
adjusting	their	representation	in	Swift	code	can	offer	significant	benefits.For	instance,	consider	changing	tag	to	an	ordered	to-Many	relationship	tags:	The	default	code	generated	by	Core	Data	is	as	follows:	extension	Item	{	@NSManaged	public	var	timestamp:	Date?	@NSManaged	public	var	tags:	NSOrderedSet?}To	enhance	readability	and	usability
of	the	code,	we	can	consider	converting	the	NSOrderedSet?	type	to	Array.	This	adjustment	not	only	reduces	the	need	for	unwrapping	but	also	aligns	the	tags	property	more	closely	with	Swift	language	conventions,	such	as	using	subscripting	and	iterators.	extension	Item	{	@NSManaged	public	var	timestamp:	Date?	@NSManaged	public	var	tags:
Array}After	this	adjustment,	we	can	more	conveniently	manipulate	these	data	in	Swift,	for	example	(as	Array	conforms	to	the	RandomAccessCollection	protocol):	ForEach(item.tags){	tag	in	Text(tag.name	??	"")}However,	its	worth	noting	that	converting	a	non-ordered	to-Many	relationship	to	an	Array	type	may	not	always	be	the	best	choice.	This	is
mainly	due	to	the	intrinsic	characteristics	of	non-ordered	collections	and	their	management	in	Core	Data.	In	Core	Data,	non-ordered	relationships	are	typically	represented	as	NSSet,	intuitively	reflecting	the	unordered	nature	and	uniqueness	of	the	elements	in	the	collection.	Converting	this	to	an	Array	type	might	cause	a	loss	of	these	key
characteristics	at	face	value.	Therefore,	for	non-ordered	relationships,	using	Swifts	Set	type	is	often	a	more	appropriate	choice.For	example,	for	the	tags	attribute	of	the	Item	entity,	if	it	is	a	non-ordered,	optional	to-Many	relationship,	it	can	be	represented	in	Swift	as	follows:	extension	Item	{	@NSManaged	public	var	timestamp:	Date?	@NSManaged
public	var	tags:	Set}This	approach	maintains	the	unordered	nature	and	uniqueness	of	the	collection	while	aligning	the	code	more	closely	with	Swift	usage	habits,	enhancing	its	readability.CountWhen	dealing	with	to-Many	relationships	in	Core	Data,	its	often	necessary	to	obtain	the	count	of	associated	objects.	While	directly	using	the	.count	property	is
a	common	method,	developers	can	also	consider	using	a	derived	attribute	(Derived	Attribute)	for	a	more	efficient	way	to	obtain	this	count.For	example,	in	the	situation	shown	below,	we	have	created	a	derived	attribute	named	count	for	the	TodoList	entity.	This	allows	developers	to	simply	access	todolist.count	to	directly	obtain	the	number	of	items
objects	associated	with	the	TodoList.	This	method	makes	retrieving	the	count	of	associated	objects	both	intuitive	and	efficient.	Compared	to	directly	calling	the	.count	property	of	a	relationship,	using	a	derived	attribute	for	counting	is	generally	more	efficient.	This	is	because	derived	attributes	employ	a	different	counting	mechanismthey	calculate	and
save	the	count	value	when	data	is	written,	and	use	this	pre-calculated	value	when	data	is	read.	This	mechanism	is	particularly	suited	to	scenarios	where	read	operations	significantly	outnumber	write	operations.However,	an	important	limitation	of	derived	attributes	is	that	they	can	only	count	data	that	has	been	persisted.	This	means	if	there	are	data
that	have	not	yet	been	saved	to	persistent	storage,	i.e.,	in	a	transient	state,	these	data	will	not	be	included	in	the	count	by	the	derived	attribute.	Therefore,	when	using	derived	attributes,	developers	need	to	be	mindful	of	this	limitation	and	ensure	that	their	data	handling	logic	takes	this	counting	method	into	consideration.For	a	deeper	understanding
of	how	to	use	derived	attributes,	its	recommended	to	read	How	to	use	Derived	and	Transient	Properties	in	Core	Data,	which	provides	a	detailed	introduction	to	the	application	of	derived	attributes.Managing	Non-Ordered	to-Many	RelationshipsIn	many	practical	application	scenarios,	to-Many	relationships	are	often	non-ordered.	This	is	especially
evident	when	using	Core	Data	with	CloudKit,	as	it	does	not	support	ordered	relationships.When	data	is	directly	retrieved	through	relationship	properties,	as	shown	in	the	example	code	below,	Core	Data	cannot	guarantee	the	order	of	the	returned	data:	let	tags	=	Array(items.tags)In	most	cases,	Core	Data	uses	a	SQLite	database	for	data	storage	at	the
backend.	In	the	database,	unless	a	specific	sort	order	is	explicitly	defined,	the	retrieval	order	of	records	is	indeterminate.Therefore,	to	ensure	consistency	when	fetching	non-ordered	to-Many	data,	it	is	advised	not	to	rely	solely	on	direct	use	of	relationship	properties.	Instead,	create	an	NSFetchRequest	that	includes	predicates	and	sort	criteria	to
perform	the	query,	as	shown	below:	func	fetchTagsBy(item:Item)	->	[Tag]	{	let	request	=	NSFetchRequest(entityName:	"Tag")	request.predicate	=	NSPredicate(format:	"item	=	%@",	item)	request.sortDescriptors	=	[NSSortDescriptor(keyPath:	\Tag.name,	ascending:	true)]	return	(try?	viewContext.fetch(request))	??	[]}In	SwiftUI	development,	its
recommended	to	encapsulate	the	interface	displaying	to-Many	data	into	a	separate	view	and	fetch	data	using	@FetchRequest.	This	approach	not	only	ensures	the	stability	of	the	data	retrieval	order	but	also	promptly	responds	to	data	changes,	making	view	updates	more	efficient:	struct	TagsList:	View	{	@FetchRequest	var	tags:	FetchedResults
init(item:	Item)	{	let	request	=	NSFetchRequest(entityName:	"Tag")	request.predicate	=	NSPredicate(format:	"item	=	%@",	item.objectID)	//	Using	NSManagedObject	and	NSManagedObjectID	generates	the	same	SQL	commands	request.sortDescriptors	=	[NSSortDescriptor(keyPath:	\Tag.name,	ascending:	true)]	_tags	=	FetchRequest(fetchRequest:
request)	}	var	body:	some	View	{	List(tags)	{	tag	in	TagDetail(tag:	tag)	}	}}struct	TagDetail:	View	{	@ObservedObject	var	tag:	Tag	var	body:	some	View	{	Text(tag.name)	}}	In	our	previous	article,	we	discussed	how	relationships	can	enhance	query	efficiency	and	expand	querying	capabilities	in	certain	scenarios.	Subqueries	in	Core	Data	are	a	prime
example	of	this	in	action.A	subquery	is	an	efficient	querying	technique	within	the	Core	Data	framework,	allowing	developers	to	perform	more	complex	queries	on	an	existing	set	of	results.	This	is	particularly	useful	when	dealing	with	complex	data	models,	especially	when	filtering	based	on	attributes	of	related	objects.The	basic	format	of	a	subquery	is
as	follows:	SUBQUERY(collection,	$x,	condition)collection	refers	to	the	set	to	be	queried,	typically	a	to-many	relationship	property.$x	is	a	variable	representing	each	element	in	the	set	(the	name	can	be	arbitrarily	set).condition	is	the	criterion	applied	to	each	element	in	the	collection.For	example,	suppose	we	want	to	retrieve	all	Item	instances	that
have	at	least	one	Tag	with	a	name	starting	with	A.	The	following	NSPredicate	expression	can	be	used:	NSPredicate(format:	"SUBQUERY(tags,	$tag,	$tag.name	BEGINSWITH	'A').@count	>	0")The	corresponding	operation	using	Swifts	higher-order	functions	in	memory	would	be:	let	result	=	items.filter	{	item	in	item.tags.contains	{	tag	in
tag.name.hasPrefix("A")	}}Subqueries	are	executed	directly	at	the	SQLite	level,	meaning	they	are	more	efficient	both	in	terms	of	performance	and	memory	usage	compared	to	filtering	in	memory.	Additionally,	it	is	recommended	to	perform	all	filtering	and	sorting	operations	at	the	SQLite	level,	using	well-designed	predicates	and	sorting	conditions.
This	approach	not	only	improves	data	processing	efficiency	but	also	helps	reduce	the	memory	load	on	the	application,	especially	when	dealing	with	large	data	sets.Whats	NextIn	this	article,	we	have	explored	a	series	of	techniques	for	applying	relationships	in	Core	Data	within	real-world	development	scenarios.	Indeed,	once	developers	grasp	the
fundamental	theories	and	internal	mechanisms	of	relationships,	they	can	continuously	summarize	and	discover	methods	and	experiences	that	are	more	suitable	for	their	own	projects.The	upcoming	article	will	concentrate	on	SwiftData,	the	successor	framework	to	Core	Data.	We	will	explore	the	changes	in	how	SwiftData	manages	data	relationships
and	critically	assess	the	applicability	of	these	changes.	Particular	attention	will	be	given	to	how	potential	performance	issues	in	relational	operations	can	be	effectively	avoided	in	its	initial	version.	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,	transform,	and	build	upon	the	material
for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.
ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of
the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Was	this	page	useful?	Let	us
know!	1	2	3	4	5	Average	rating:	4.0/5	Programs	to	support	computer	infrastructureUtility	software	is	a	program	specifically	designed	to	help	manage	and	tune	system	or	application	software.	It	is	used	to	support	the	computer	infrastructure	-	in	contrast	to	application	software,	which	is	aimed	at	directly	performing	tasks	that	benefit	ordinary	users.
However,	utilities	often	form	part	of	the	application	systems.	For	example,	a	batch	job	may	run	user-written	code	to	update	a	database	and	may	then	include	a	step	that	runs	a	utility	to	back	up	the	database,	or	a	job	may	run	a	utility	to	compress	a	disk	before	copying	files.Although	a	basic	set	of	utility	programs	is	usually	distributed	with	an	operating
system	(OS),	and	this	first	party	utility	software	is	often	considered	part	of	the	operating	system,	users	often	install	replacements	or	additional	utilities.[1][2]	Those	utilities	may	provide	additional	facilities	to	carry	out	tasks	that	are	beyond	the	capabilities	of	the	operating	system.Many	utilities	that	might	affect	the	entire	computer	system	require	the
user	to	have	elevated	privileges,	while	others	that	operate	only	on	the	user's	data	do	not.[3]Anti-virus	utilities	scan	for	computer	viruses	and	block	or	remove	them.Clipboard	managers	expand	the	clipboard	functionality	of	an	operating	system.Computer	access	control	software	grants	or	denies	requests	for	access	to	system	resources.Debuggers
typically	permit	the	examination	and	modification	of	data	and	program	instructions	in	memory	and	on	disk.Diagnostic	programs	determine	and	report	the	operational	status	of	computer	hardware	and	software.	Memory	testers	are	one	example.Network	utilities	analyze	the	computer's	network	connectivity,	configure	network	settings,	check	data
transfer	or	log	events.Package	managers	are	used	to	configure,	install	or	keep	up	to	date	other	software	on	a	computer.Registry	cleaners	clean	and	optimize	the	Windows	Registry	by	removing	old	registry	keys	that	are	no	longer	in	use.System	monitors	monitor	resources	and	performance	in	a	computer	system.System	profilers	provide	detailed
information	about	installed	software	and	hardware.Backup	software	makes	copies	of	all	information	stored	on	a	disk	and	restores	either	the	entire	disk	(aka	Disk	cloning)	in	an	event	of	disk	failure	or	selected	files	that	are	accidentally	deleted	or	corrupted.	Undeletion	utilities	are	sometimes	more	convenient.Disk	checkers	scan	an	operating	hard	drive
and	check	for	logical	(filesystem)	or	physical	errors.Disk	compression	utilities	transparently	compress/uncompress	the	contents	of	a	disk,	increasing	the	capacity	of	the	disk.Disk	defragmenters	detect	computer	files	whose	contents	are	scattered	across	several	locations	on	the	hard	disk	and	collect	the	fragments	into	one	contiguous	area.Disk
formatters	prepare	a	data	storage	device	such	as	a	hard	disk,	solid-state	drive,	floppy	disk	or	USB	flash	drive	for	initial	use.	These	are	often	used	to	permanently	erase	an	entire	device.Disk	partition	editors	divide	an	individual	drive	into	multiple	logical	drives,	each	with	its	own	file	system	which	can	be	mounted	by	the	operating	system	and	treated	as
an	individual	drive.Disk	space	analyzers	provide	a	visualization	of	disk	space	usage	by	getting	the	size	for	each	folder	(including	sub	folders)	and	files	in	folder	or	drive.	showing	the	distribution	of	the	used	space.Tape	initializers	write	a	label	to	a	magnetic	tape	or	other	magnetic	medium.	Initializers	for	DECtape	format	the	tape	into	blocks.Archivers
output	a	stream	or	a	single	file	when	provided	with	a	directory	or	a	set	of	files.	Archive	suites	may	include	compression	and	encryption	capabilities.	Some	archive	utilities	have	a	separate	un-archive	utility	for	the	reverse	operation.	One	nearly	universal	type	of	archive	file	format	is	the	zip	file.Cryptographic	utilities	encrypt	and	decrypt	streams	and
files.Data	compression	utilities	output	a	shorter	stream	or	a	smaller	file	when	provided	with	a	stream	or	file.Data	conversion	utilities	transform	data	from	a	source	file	to	some	other	format,	such	as	from	a	text	file	to	a	PDF	document.Data	recovery	utilities	are	used	to	rescue	good	data	from	corrupted	files.Data	synchronization	utilities	establish
consistency	among	data	from	a	source	to	a	target	data	storage	and	vice	versa.	There	are	several	branches	of	this	type	of	utility:File	synchronization	utilities	maintain	consistency	between	two	sources.	They	may	be	used	to	create	redundancy	or	backup	copies	but	are	also	used	to	help	users	carry	their	digital	music,	photos	and	video	in	their	mobile
devices.Revision	control	utilities	can	recreate	a	coherent	structure	where	multiple	users	simultaneously	modify	the	same	file.Disk	cleaners	find	files	that	are	unnecessary	to	computer	operation,	or	take	up	considerable	amounts	of	space.File	comparison	utilities	provide	a	standalone	capability	to	detect	differences	between	files.File	managers	provide	a
convenient	method	of	performing	routine	data	management,	email	recovery	and	management	tasks,	such	as	deleting,	renaming,	cataloging,	uncataloging,	moving,	copying,	merging,	setting	write	protection	status,	setting	file	access	permissions,	generating	and	modifying	folders	and	data	sets.Data	generators	(e.g.	IEBDG)	create	a	file	of	test	data
according	to	specified	patterns.Hex	(or	octal)	editors	directly	modify	the	text	or	data	of	a	file	without	regard	to	file	format.	These	files	can	be	data	or	programs.HTML	checkers	validate	HTML	code	and	check	links.Installation	or	setup	utilities	are	used	to	initialize	or	configure	programs,	usually	applications	programs,	for	use	in	a	specific	computer
environment.	There	are	also	Uninstallers.Patching	utilities	perform	alterations	of	files,	especially	object	programs	when	program	source	is	unavailable.Screensavers	prevent	phosphor	burn-in	on	CRT	and	plasma	computer	monitors.Sort/Merge	programs	arrange	records	(lines)	of	a	file	into	a	specified	sequence.Standalone	macro	recorders	permit	use
of	keyboard	macros	in	programs	that	do	not	natively	support	such	a	feature.List	of	DOS	commandsList	of	macOS	built-in	appsSupport	programs	for	OS/360	and	successorsList	of	Unix	commandsList	of	KDE	utilitiesBatch	fileShell	scriptSystem	software^	"Non-Opec	(advertisement)".	Computerworld.	Sep	3,	1979.	Retrieved	May	20,	2019.^	Mendelson,
Edward	(June	8,	1999).	"Fix	What	Ails	Your	PC".	PC	Magazine.	Retrieved	May	20,	2019.^	"Linux	ifconfig	command".	Computer	Hope.	Retrieved	May	20,	2019.Retrieved	from	"	Were	going	to	investigate	the	basic	strategies	to	debug	an	application	created	with	Unity,	from	logs	to	breakpoints,	during	the	development	stage.	Once	an	app	is	in	production
we	can	switch	to	using	Bugfender,	and	well	explain	this	too.	To	illustrate	this	tutorial	we	have	created	a	custom	app	called	The	Bugfender	Game,	a	variation	of	the	popular	Flappy	Bird.	Unity	is	a	cross-platform	game	engine	that	gives	users	the	ability	to	create	games	and	experiences	in	2D,	3D,	VR	and	AR.	Due	to	its	simplicity	and	its	all-in-one
development	environment	it	has	been	the	most	popular	game	engine	for	several	years.	Almost	every	single	indie	game	developer	either	started	building	games	using	Unity,	or	is	still	using	it.	On	one	side,	Unity	has	a	very	intuitive	design	that	makes	it	easy	to	use.	On	the	other	side,	the	choice	of	C#	as	the	main	language	keeps	things	easy	for
programmers,	especially	when	compared	to	other	game	engines	like	Unreal	that	require	a	high	level	of	C++	knowledge.	All	of	these	features	make	Unity	a	compelling	choice	for	small	teams	as	well	as	for	people	starting	to	make	games.	Add	to	that	a	great	community,	a	huge	asset	store,	and	tons	of	tutorials	and	online	courses	and	its	easy	to	see	why
Unity	has	become	and	remains	the	most	widely	used	game	engine	on	the	market.	Unity	offers	a	Personal	License	free	of	charge	for	people	with	annual	revenue	of	less	than	$100,000.	We	dont	expect	that	you	can	earn	that	amount	of	money	with	this	tutorial	(although	wed	be	delighted	to	be	proven	wrong!)	so	go	ahead	and	download	Unity	from	the
official	website	if	you	havent	done	so	yet.	Download	Unity	from	the	official	webpage	and	follow	the	steps	to	install	Unity	Hub	so	you	can	manage	both	your	projects	and	Unity	versions.	Check	out	this	repository	using:	$git	clone	Open	Unity	and	use	the	option	Open	Project	to	access	the	previously	downloaded	repo.	We	have	used	Unity	2019.4.0,	but
you	can	use	any	version	older	than	2018.	The	project	is	what	we	have	called	The	Bugfender	Game.	It	is	a	clone	of	the	popular	Flappy	Bird.	You	can	press	the	play	button	and	use	the	left	click	to	move	the	main	character.	In	the	lower	left	corner	in	the	previous	screenshot,	you	can	see	the	Project	panel	where	you	can	find	the	game	classes.	Double	click
in	the	GameController	class	and	Unity	will	open	Microsoft	Visual	Studio,	which	is	the	IDE	we	will	use	to	write	code	and	is	installed	by	default	on	your	computer,	along	with	Unity.	In	Unity,	like	almost	every	other	environment,	we	can	use	logs	and	breakpoints	to	debug	our	code.	To	print	a	log	in	the	console	we	can	use	Debug.Log	in	any	part	of	our
code.	Debug.Log("This	is	a	log	in	Unity");	Actually,	we	can	differentiate	between	five	different	types	of	logs:	Debug.Log:	the	default	log	level.	We	can	use	this	to	register	the	execution	of	a	concrete	line	of	code	or	to	log	the	value	of	a	variable.Debug.LogFormat:	similar	to	the	previous	log	type,	this	one	allows	us	to	introduce	formatted
text.Debug.LogWarning:	this	is	the	warning	log	level.	We	can	use	it	if	for	example	our	game	reaches	a	certain	point	in	the	execution	that	was	unexpected	but	not	so	worrying	that	we	should	call	it	an	error.	(Maybe	some	frames	where	dropped?)Debug.LogError	and	Debug.LogException:	these	are	the	error	and	exception	log	levels	that	we	should	use	to
register	serious	issues,	like	the	main	character	of	the	game	suddenly	falling	out	of	the	scene.	In	general,	it	is	good	practice	using	as	much	logs	as	possible,	so	when	something	unexpected	happens	we	can	go	to	the	console	and	quickly	revisit	what	exactly	happened	in	the	last	few	minutes.	If	you	use	the	different	log	levels	then,	when	you	have	several
different	logs,	the	Console	Panel	will	display	the	logs	with	a	different	icon,	which	will	help	you	understand	the	code	execution.	Moreover,	you	can	use	the	buttons	in	the	top	right	corner	to	filter	the	log	levels	that	are	important	for	you.	You	can	find	more	information	about	the	Unity	Logger	via	the	official	documents.	As	you	might	know,	a	breakpoint	is
a	mark	in	your	code	that	will	pause	the	execution	of	the	game	at	the	exact	moment	the	code	reaches	the	relevant	point.	If	you	are	not	familiar	with	the	use	of	breakpoints,	we	wrote	two	articles	studying	the	concept	in	depth.	Those	articles	were	written	for	iOS	and	Android	but	the	concepts	are	pretty	much	the	same:	In	Visual	Studio,	we	can	place	a
breakpoint	in	the	left-hand	bar	of	the	window,	close	to	the	line	number	in	which	we	want	to	interrupt	the	execution.	Once	we	set	the	breakpoint,	we	will	need	to	click	the	button	Attach	to	Unity	on	the	toolbar,	which	enables	the	debugger.	Now,	if	everything	worked,	Visual	Studio	will	switch	to	an	orange	outline	meaning	that	we	are	in	debugging	mode.
Finally,	we	use	our	game	until	the	execution	of	the	program	reaches	the	part	of	the	code	which	contains	the	breakpoint.	The	execution	will	be	immediately	paused	when	this	point	is	reached.	Where	the	execution	has	been	interrupted,	we	can	check	that	the	Attach	to	Unity	button	now	says	Continue.	This	is	the	button	we	must	press	to	resume	the
game	execution.	But	before	resuming	the	execution	lets	take	a	look	at	the	lower	panels.	In	the	left-hand	panel	we	can	now	see	the	variables	that	are	in	the	scope	of	the	breakpoint	and	even	check	its	value.	In	the	right-hand	panel	we	can	see	the	stack	trace	of	the	functions	that	brought	us	to	this	breakpoint.	Finally,	instead	of	continuing,	we	can	use	the
step	by	step	and	the	step	over	buttons	(the	arrows	to	the	right	of	the	Continue	button	in	the	screen).	This	button	allow	us	to	move	only	one	line	forward	or	to	the	next	function	without	resuming	the	execution.	We	cannot	add	more	code	in	Visual	Studio	until	we	finish	the	debugging	session.	That	can	be	done	simply	by	pressing	the	Stop	button.	You	can
find	more	Information	about	the	Unity	debugger	in	the	official	docs.	Logs	and	breakpoints	are	perfect	to	debug	our	game	in	our	computer.	However,	when	the	game	is	sent	to	production	and	users	start	to	complain,	this	might	be	not	enough.	Most	of	the	users	have	no	technical	skills,	so	we	will	often	receive	bug	reports	like	it	doesnt	work	or	it	crashes.
Our	recommended	strategy	is	to	contact	those	users	and	ask	them	to	fill	out	a	bug	report	template,	or	just	ask	them	a	few	questions	that	might	look	obvious	to	you	as	a	game	developer	but	that	are	not	obvious	to	the	users:	What	were	you	doing	when	the	game	stopped	working?What	do	you	mean	by	stopped	working?	Does	it	mean	you	cant	control	the
game	anymore?	Does	it	mean	the	app	was	suddenly	closed?Could	you	describe	a	list	of	the	steps	by	which	the	app	reaches	this	unstable	state	where	you	cant	play	anymore?	In	an	ideal	world,	we	would	visit	the	home	of	our	users	to	see	the	problem	with	our	own	eyes	and	if	necessary,	we	would	execute	the	Unity	debugger	on	their	computers	to	find
the	exact	problem	with	the	code.	We	cant	do	that	but	we	can	use	Bugfender,	which	is	going	to	behave	in	a	very	similar	way.	Bugfender	is	a	remote	logger	that	allows	you	to	revisit	the	console	logs	for	a	specific	device.	The	only	two	things	we	need	to	do	is	add	Bugfender	to	the	Unity	project	and	replace	the	calls	to	Debug.Log()	with	Bugfender.Log().
Then,	when	we	receive	a	bug	report	from	a	user	we	can	just	go	to	the	Bugfender	console	and	check	exactly	what	happened.	Installing	the	Bugfender	SDK	in	your	project	will	take	you	just	two	minutes.	Download	and	import	this	assets	package	into	your	project.Drag	the	package	to	Unity	to	import	it.	3.	Drag	the	Bugfender	package	from	the
Assets\Bugfender\Prefabs	to	the	Hierarchy	panel	If	you	dont	have	a	Bugfender	account	you	can	get	one	for	free	here.Go	back	to	Unity,	select	the	Bugfender	GameObject	in	the	hierarchy	panel	and	set	the	Bugfender	app	key	in	the	Inspector	panel.	Even	if	your	game	has	several	scenes,	you	only	need	to	add	Bugfender	once,	as	we	did	in	the	last	step.	6.
Now	you	can	use	Bugfender.Log()	to	send	logs	to	Bugfender.	Run	the	game	and	ensure	the	code	reaches	the	spot	where	you	placed	the	log	line.	Log	into	the	Bugfender	console	and	after	a	few	seconds	a	new	device	should	show	up	in	the	devices	list.	8.	If	you	click	on	the	device	then	you	will	be	able	to	see	the	console	logs	for	the	device	that	youve	sent
to	Bugfender	using	Bugfender.log().	Congratulations!	Now	youve	completed	the	circle	and	you	can	debug	your	games	locally,	both	while	youre	developing	them	and	later	on	in	production,	when	your	users	are	already	playing	them.	Thats	all	for	this	tutorial,	but	remember	that	weve	only	scratched	the	surface	of	Bugfenders	capabilities.	Bugfender	can
also	help	you	to	detect	crashes,	get	user	feedback,	provide	live	customer	service	and	create	automated	actions	really,	the	list	is	endless.	We	suggest	you	visit	our	blog	from	time	to	time,	because	we	regularly	publish	engineering-related	content.	If	you	would	like	to	read	more	Unity-related	tutorials	or	you	have	any	specific	doubts,	feel	free	to	reach	us
at	,	through	our	customer	service	channels	or	via	Github.	We	have	also	an	extensive	section	of	documents	on	our	website	that	offer	plenty	more	useful	information	about	Bugfender.	Happy	debugging!	Swift	Core	Data,	a	powerful	framework,	streamlines	the	process	of	managing	persistent	storage	in	iOS	and	macOS	applications.	In	this
article,	we	will	explore	the	fundamentals	of	Swift	Core	Data	and	demonstrate	how	to	effectively	utilize	it	in	your	projects.What	is	Core	Data	?Core	Data	is	a	framework	that	provides	an	object-oriented	approach	to	managing	and	persisting	data	in	your	application.	Integrated	seamlessly	with	Xcode,	Core	Data	supports	various	data	models	and	uses	the
SQLite	database	as	its	default	persistent	store,	with	additional	support	for	XML	and	binary	files.How	to	use	it	?By	integrating	Core	Data	into	your	app,	you	can	efficiently	manage	and	store	data,	improving	the	user	experience	and	enabling	offline	functionality.	Lets	walk	through	the	process	of	integrating	Core	Data	into	your	Swift	app,	step	by
step.Step	1:	Set	Up	Core	Data	in	Xcode:To	begin,	open	your	Xcode	project	and	follow	these	steps:1.	Select	your	project	in	the	Project	Navigator.2.	Navigate	to	the	Signing	&	Capabilities	tab.3.	Click	the	+	button	and	search	for	Core	Data	in	the	list.4.	Add	the	Core	Data	capability	to	your	project.Step	2:	Create	a	Data	Model:1.	Right-click	on	your
projects	folder	in	the	Project	Navigator	and	choose	New	File.2.	Select	Data	Model	under	the	Core	Data	category.3.	Name	your	data	model	(e.g.,	MyAppModel)	and	click	Create.Step	3:	Design	Your	Data	Model:1.	In	the	newly	created	data	model	file,	youll	see	an	empty	canvas.2.	Click	the	+	button	to	add	entities	and	define	their	attributes.3.	Add
attributes	such	as	name,	image,	or	any	other	relevant	data	for	your	app.4.	Establish	relationships	between	entities,	if	necessary.Step	4:	Generate	Managed	Object	Subclasses:1.	Select	your	data	model	file.2.	Go	to	Editor	->	Create	NSManagedObject	Subclass3.	Select	the	entities	you	want	to	generate	subclasses	for.4.	Click	Next	and	choose	the
destination	folder	for	the	generated	files.5.	Click	Create	to	generate	the	managed	object	subclasses.Lets	begin	by	examining	the	addCoreData	function	within	the	CoreDataService	class:static	func	addCoreData(name:	String,	image:	URL)	{	let	context	=	(UIApplication.shared.delegate	as!	AppDelegate).persistentContainer.viewContext	let	newData	=
MyData(context:	context)	newData.name	=	name	newData.image	=	image	do	{	try	context.save()	}	catch	{	print("error-Saving	data")	}}This	function	allows	you	to	add	new	data	objects	to	the	persistent	store.	It	creates	a	new	instance	of	the	MyData	entity	within	the	managed	object	context.	You	can	customize	the	properties	of	the	new	object,	such	as
name	and	image.	Once	you	save	the	context,	the	changes	are	persisted,	making	the	data	available	for	retrieval	later.To	retrieve	data	from	the	persistent	store,	we	can	use	the	fetchCoreData	function:static	func	fetchCoreData(onSuccess:	@escaping	([MyData]?)	->	Void)	{	let	context	=	(UIApplication.shared.delegate	as!
AppDelegate).persistentContainer.viewContext	do	{	let	items	=	try	context.fetch(MyData.fetchRequest())	as?	[MyData]	onSuccess(items)	}	catch	{	print("error-Fetching	data")	}}This	function	fetches	data	objects	of	the	MyData	entity	from	the	persistent	store.	It	retrieves	the	managed	object	context	from	the	application	delegate	and	performs	a	fetch
request.	The	fetched	items	are	then	passed	to	the	onSuccess	closure,	allowing	you	to	handle	and	process	the	data	accordingly.When	removing	specific	data	objects	from	the	persistent	store,	you	can	use	the	deleteCoreData	function:static	func	deleteCoreData(indexPath:	Int,	items:	[MyData])	{	let	context	=	(UIApplication.shared.delegate	as!
AppDelegate).persistentContainer.viewContext	let	dataToRemove	=	items[indexPath]	context.delete(dataToRemove)	do	{	try	context.save()	}	catch	{	print("error-Deleting	data")	}}This	function	deletes	the	selected	data	object,	referenced	by	the	indexPath	parameter,	from	the	persistent	store.	It	fetches	the	managed	object	context	and	uses	it	to
remove	the	specified	object.	By	saving	the	context,	the	deletion	is	committed	and	the	changes	are	reflected	in	the	persistent	store.Conclusion:Swift	Core	Data	provides	a	powerful	and	flexible	solution	for	managing	persistent	storage	in	your	iOS	applications.	In	this	article,	we	explored	the	basics	of	Core	Data	and	learned	how	to	perform	essential
operations	such	as	adding,	fetching,	and	deleting	data	objects.	By	utilizing	the	provided	code	snippets	and	understanding	their	purpose,	you	can	harness	the	capabilities	of	Core	Data	to	build	robust	and	data-driven	applications.	Core	Data	is	a	framework	that	you	use	to	manage	the	model	layer	objects	in	your	application.	It	provides	generalized	and
automated	solutions	to	common	tasks	associated	with	object	life	cycle	and	object	graph	management,	including	persistence.	Core	Data	typically	decreases	by	50	to	70	percent	the	amount	of	code	you	write	to	support	the	model	layer.	This	is	primarily	due	to	the	following	built-in	features	that	you	do	not	have	to	implement,	test,	or	optimize:	Change
tracking	and	built-in	management	of	undo	and	redo	beyond	basic	text	editing.	Maintenance	of	change	propagation,	including	maintaining	the	consistency	of	relationships	among	objects.	Lazy	loading	of	objects,	partially	materialized	futures	(faulting),	and	copy-on-write	data	sharing	to	reduce	overhead.	Automatic	validation	of	property	values.
Managed	objects	extend	the	standard	key-value	coding	validation	methods	to	ensure	that	individual	values	lie	within	acceptable	ranges,	so	that	combinations	of	values	make	sense.	Schema	migration	tools	that	simplify	schema	changes	and	allow	you	to	perform	efficient	in-place	schema	migration.	Optional	integration	with	the	applications	controller
layer	to	support	user	interface	synchronization.	Grouping,	filtering,	and	organizing	data	in	memory	and	in	the	user	interface.	Automatic	support	for	storing	objects	in	external	data	repositories.	Sophisticated	query	compilation.	Instead	of	writing	SQL,	you	can	create	complex	queries	by	associating	an	NSPredicate	object	with	a	fetch	request.	Version
tracking	and	optimistic	locking	to	support	automatic	multiwriter	conflict	resolution.	Effective	integration	with	the	macOS	and	iOS	tool	chains.	Note	This	document	uses	an	employees	database-style	example	for	expediency	and	clarity.	It	represents	a	rich	but	easily	understood	problem	domain.	However,	the	Core	Data	framework	is	not	restricted	to
database-style	applications,	nor	is	there	an	expectation	of	client-server	behavior.	The	framework	is	equally	as	useful	as	the	basis	of	a	vector	graphics	application	such	as	Sketch	or	a	presentation	application	such	as	Keynote.	Creating	a	Managed	Object	Model	Copyright	2018	Apple	Inc.	All	rights	reserved.	Terms	of	Use	|	Privacy	Policy	|	Updated:	2017-
03-27Advanced	Data	Management	for	iOS	ApplicationsiOS	applications	often	require	users	to	store	personal	data,	settings,	and	other	information.	Using	the	right	data	management	system	for	such	data	directly	impacts	your	apps	success.	Core	Data,	provided	by	Apple,	is	a	framework	for	data	modeling	and	management	on	iOS	and	macOS.	Simply
put,	Core	Data	is	a	powerful	tool	that	allows	you	to	manage,	store,	query,	and	retrieve	your	data.In	this	article,	we	will	cover	the	basics	of	Core	Data	and	provide	a	detailed	guide	with	code	examples	to	show	you	how	to	use	it	effectively.Photo	has	taken	from	OceanoBe	websiteWhat	is	Core	Data?Core	Data	is	a	framework	used	to	manage	database
operations.	It	provides	an	abstraction	layer	over	relational	databases	like	SQLite,	handling	database	operations	for	your	app.	However,	Core	Data	is	not	just	a	database	tool;	its	a	comprehensive	model	that	also	optimizes	in-memory	data	management,	handles	data	relationships,	and	processes	your	data	efficiently.Advantages	of	Core	DataDatabase
abstraction:	You	dont	have	to	deal	with	SQL	queries.	Core	Data	handles	them	for	you.Powerful	data	relationship	management:	Core	Data	makes	it	easy	to	manage	relationships	between	your	data	(such	as	one-to-many,	many-to-many).	Share	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	remix,
transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	You	must	give	appropriate	credit	,	provide	a	link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the
licensor	endorses	you	or	your	use.	ShareAlike	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	You	may	not	apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to
comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions	necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the
material.	,the	free	encyclopedia	that	anyone	can	edit.117,937	active	editors	7,000,660	articles	in	EnglishAndrea	Navagero	(14831529)	was	a	Venetian	diplomat	and	writer.	He	entered	the	Great	Council	of	Venice	at	the	age	of	twenty,	five	years	younger	than	was	normal	at	the	time.	He	edited	manuscripts	at	the	Aldine	Press,	garnering	a	reputation	as	a
scholar	and	a	highly	skilled	writer.	In	1515,	he	was	appointed	the	official	historian	of	the	Republic	of	Venice	as	well	as	the	caretaker	of	a	library	containing	the	collection	of	the	scholar	Bessarion.	Navagero	was	named	the	Venetian	ambassador	to	Spain	in	1523	and	navigated	the	volatile	diplomatic	climate	caused	by	the	conflict	between	CharlesV	of
Spain	and	FrancisI	of	France.	By	the	time	Navagero	arrived	back	in	Venice	in	1528,	he	had	grown	disillusioned	with	politics	and	wished	to	return	to	editing	manuscripts	and	cultivating	his	prized	gardens.	Much	to	his	dismay,	he	was	appointed	ambassador	to	France	in	January	1529.	After	traveling	to	meet	with	FrancisI,	he	fell	ill	and	died	that	May.
(Fullarticle...)Recently	featured:	Nosy	KombaMcDonnell	Douglas	Phantom	in	UK	serviceTransportation	during	the	2024	Summer	Olympics	and	ParalympicsArchiveBy	emailMore	featured	articlesAboutEngraving	of	the	Great	Pyramid	of	Giza...	that	the	1572	Eight	Wonders	of	the	World	(engraving	pictured)	is	the	source	of	the	modern	list	of	classical
Seven	Wonders	of	the	World?...	that	Hedwig	Tam	gained	20	pounds	to	play	a	postpartum	mother	in	Montages	of	a	Modern	Motherhood?...	that	the	Alfonsine	Ordinances	punished	Jews	and	Muslims	with	enslavement	if	they	disguised	their	identity	with	the	intention	of	"sinning	with	Christian	women"?...	that	even	though	he	had	never	seen	a	field
hockey	game,	Willy	Miranda	became	a	high	school	coach	and	went	on	to	win	over	450	games	across	a	42-year	tenure?...	that	a	false	viral	rumour	claimed	42	people	committed	suicide	after	their	homoerotic	fan	art	was	included	in	the	film	Crazy	About	One	Direction?...	that	an	Arizona	TV	station	put	a	satellite	dish	in	a	vacant	swimming	pool?...	that	42
years	after	Jilly	Cooper's	How	to	Stay	Married	was	first	published,	she	described	it	as	"terribly	politically	incorrect"?...	that	wrestler	Kurt	Howell	won	all	108	of	his	matches	in	high	school?...	that	the	second-place	candidate	in	the	2018	Taipei	mayoral	election	lost	by	just	0.23%,	demanded	a	recount,	and	ended	up	losing	by	even	more?ArchiveStart	a
new	articleNominate	an	articlenosato	Daikinosato	Daiki	(pictured)	becomes	sumo's	75th	yokozuna.In	association	football,	Liverpool	win	the	Premier	League	title.In	motor	racing,	lex	Palou	wins	the	Indianapolis	500.In	basketball,	the	EuroLeague	concludes	with	Fenerbahe	winning	the	Final	Four	Playoff.Ongoing:	Gaza	warM23	campaignRussian
invasion	of	UkrainetimelineSudanese	civil	wartimelineRecent	deaths:	Phil	RobertsonMary	K.	GaillardPeter	DavidAlan	YentobGerry	ConnollySebastio	SalgadoNominate	an	articleMay	29:	Feast	day	of	Saint	PaulVI	(Catholicism)Headline	in	the	New	York	Times1233	MongolJin	War:	The	Mongols	entered	and	began	looting	Kaifeng,	the	capital	of	the	Jin
dynasty	of	China,	after	a	13-month	siege.1416	A	squadron	of	the	Venetian	navy	captured	many	Ottoman	ships	at	the	Battle	of	Gallipoli,	confirming	Venetian	naval	superiority	in	the	Aegean	Sea	for	the	next	few	decades.1913	During	the	premiere	of	the	ballet	Le	Sacre	du	printemps	by	Igor	Stravinsky	at	the	Thtre	des	Champs-lyses	in	Paris,	the	avant-
garde	nature	of	the	music	and	choreography	caused	a	near-riot	in	the	audience	(report	pictured).1999	Charlotte	Perrelli,	representing	Sweden,	won	the	Eurovision	Song	Contest,	the	first	edition	not	to	feature	an	orchestra	or	live	accompaniment.2011	Residents	of	Portland,	Oregon,	held	a	rally	called	Hands	Across	Hawthorne	in	response	to	an	attack
against	a	gay	couple	holding	hands	while	crossing	the	Hawthorne	Bridge.Benedetto	Pistrucci	(b.1783)G.K.	Chesterton	(b.1874)Hubert	Opperman	(b.1904)Uro	Drenovi	(d.1944)More	anniversaries:	May	28May	29May	30ArchiveBy	emailList	of	days	of	the	yearAboutThe	Australian	white	ibis	(Threskiornis	molucca)	is	a	wading	bird	of	the	ibis	family,
Threskiornithidae.	It	is	widespread	across	much	of	Australia,	and	has	a	predominantly	white	plumage	with	a	bare,	black	head,	long	downcurved	bill,	and	black	legs.	While	it	is	closely	related	to	the	African	sacred	ibis,	the	Australian	white	ibis	is	a	native	Australian	bird.	Due	to	its	increasing	presence	in	the	urban	environment	and	its	habit	of
rummaging	in	garbage,	the	species	has	acquired	a	variety	of	colloquial	names	such	as	"tip	turkey"	and	"bin	chicken".	This	Australian	white	ibis	was	photographed	at	the	Royal	Botanic	Garden,	Sydney.Photograph	credit:	Charles	J.	SharpRecently	featured:	Hell	Gate	BridgeAnemonoides	blandaBluespotted	ribbontail	rayArchiveMore	featured
picturesCommunity	portal	The	central	hub	for	editors,	with	resources,	links,	tasks,	and	announcements.Village	pump	Forum	for	discussions	about	Wikipedia	itself,	including	policies	and	technical	issues.Site	news	Sources	of	news	about	Wikipedia	and	the	broader	Wikimedia	movement.Teahouse	Ask	basic	questions	about	using	or	editing
Wikipedia.Help	desk	Ask	questions	about	using	or	editing	Wikipedia.Reference	desk	Ask	research	questions	about	encyclopedic	topics.Content	portals	A	unique	way	to	navigate	the	encyclopedia.Wikipedia	is	written	by	volunteer	editors	and	hosted	by	the	Wikimedia	Foundation,	a	non-profit	organization	that	also	hosts	a	range	of	other	volunteer
projects:	CommonsFree	media	repository	MediaWikiWiki	software	development	Meta-WikiWikimedia	project	coordination	WikibooksFree	textbooks	and	manuals	WikidataFree	knowledge	base	WikinewsFree-content	news	WikiquoteCollection	of	quotations	WikisourceFree-content	library	WikispeciesDirectory	of	species	WikiversityFree	learning	tools
WikivoyageFree	travel	guide	WiktionaryDictionary	and	thesaurusThis	Wikipedia	is	written	in	English.	Many	other	Wikipedias	are	available;	some	of	the	largest	are	listed	below.	1,000,000+	articles	DeutschEspaolFranaisItalianoNederlandsPolskiPortugusSvenskaTing	Vit	250,000+	articles	Bahasa	IndonesiaBahasa	MelayuBn-lm-
gCataletinaDanskEestiEsperantoEuskaraMagyarNorsk	bokmlRomnSimple	EnglishSloveninaSrpskiSrpskohrvatskiSuomiTrkeOzbekcha	50,000+	articles	AsturianuAzrbaycancaBosanskiFryskGaeilgeGalegoHrvatskiKurdLatvieuLietuviNorsk	nynorskShqipSlovenina	Retrieved	from	"	2Calendar
yearYearsMillennium2ndmillenniumCenturies12thcentury13thcentury	14thcenturyDecades1210s1220s1230s	1240s1250sYears1230123112321233	123412351236vte1233	by	topicLeadersPolitical	entitiesState	leadersReligious	leadersBirth	and	death	categoriesBirths	DeathsEstablishments	and	disestablishments	categoriesEstablishments
DisestablishmentsArt	and	literature1233	in	poetryvte1233	in	various	calendarsGregorian	calendar1233MCCXXXIIIAb	urbe	condita1986Armenian	calendar682	Assyrian	calendar5983Balinese	saka	calendar11541155Bengali	calendar639640Berber	calendar2183English	Regnal	year17Hen.318Hen.3Buddhist	calendar1777Burmese
calendar595Byzantine	calendar67416742Chinese	calendar	(WaterDragon)3930	or	3723to	(WaterSnake)3931	or	3724Coptic	calendar949950Discordian	calendar2399Ethiopian	calendar12251226Hebrew	calendar49934994Hindu	calendars-	Vikram	Samvat12891290-	Shaka	Samvat11541155-	Kali	Yuga43334334Holocene	calendar11233Igbo
calendar233234Iranian	calendar611612Islamic	calendar630631Japanese	calendarJei	2	/	Tenpuku	1()Javanese	calendar11421143Julian	calendar1233MCCXXXIIIKorean	calendar3566Minguo	calendar679	before	ROC679Nanakshahi	calendar235Thai	solar	calendar17751776Tibetan	calendar(male	Water-Dragon)1359	or	978	or	206to(female	Water-
Snake)1360	or	979	or	207	Henry	I	of	Cyprus	receives	a	messageYear	1233	(MCCXXXIII)	was	a	common	year	starting	on	Saturday	of	the	Julian	calendar.War	of	the	Lombards:	Lombard	forces	at	Kyrenia	surrender	to	John	of	Beirut,	after	a	10-month	siege.	The	defenders,	with	their	personal	belongings,	are	allowed	to	retire	to	Tyre.	Captured	prisoners
are	exchanged	for	those	held	by	Richard	Filangieri,	commander	of	the	Lombards,	at	Tyre.	Cyprus	is	wholly	restored	under	the	rule	of	the	16-year-old	King	Henry	I	("the	Fat").	His	vassals	are	rewarded,	and	loans	that	they	have	made	are	repaid.[1]August	20	Oath	of	Bereg:	King	Andrew	II	of	Hungary	vows	to	the	Holy	See	that	he	will	not	employ	Jews
and	Muslims	to	administer	royal	revenues,	which	causes	diplomatic	complaints	and	ecclesiastical	censures.[2]Winter	Reconquista:	King	Ferdinand	III	of	Castile	("the	Saint")	conquers	the	cities	of	Trujillo	and	beda.	The	Castilian	army	besieges	the	city	of	Peniscola.	Ferdinand	forces	Ibn	Hud,	ruler	of	the	Taifa	of	Zaragoza,	to	sign	a	truce.[3]August
Richard	Marshal,	3rd	Earl	of	Pembroke,	signs	an	alliance	with	Llywelyn	the	Great,	to	join	forces	to	revolt	against	King	Henry	III.	Richard	is	faced	by	demands	from	royal	bailiffs	in	September	where	the	garrison	of	Usk	Castle	is	forced	to	surrender.November	Henry	III's	army	camped	at	Grosmont	Castle	is	attacked	in	the	night,	by	a	force	of	Welsh	and
English	rebels.	Several	of	Henry's	supporters	are	captured,	and	the	castle	is	returned	to	Hubert	de	Burgh,	one	of	the	rebels.May	29	MongolJin	War:	The	Mongol	army	led	by	gedei	Khan	captures	Kaifeng,	capital	of	the	Jin	dynasty	('Great	Jin'),	after	the	13-month	Siege	of	Kaifeng	(1232).	The	Mongols	plunder	the	city,	while	Emperor	Aizong	of	Jin	flees
for	the	town	of	Caizhou.	Meanwhile,	gedei	departs	and	leaves	the	final	conquest	to	his	favoured	general,	Subutai.December	Siege	of	Caizhou:	The	Mongols	under	gedei	Khan	besiege	Caizhou	and	ally	themselves	with	the	Chinese	Song	dynasty	to	eliminate	the	Jin	Dynasty.Gendt	receives	its	city	rights	from	Otto	II	("the	Lame"),	count	of	Guelders
(modern	Netherlands).Pope	Gregory	IX	establishes	the	Papal	Inquisition,	to	regularize	the	persecution	of	heresy.June/July	Ibn	Manzur,	Arab	lexicographer	and	writer	(d.	1312)August	15	Philip	Benizi	de	Damiani,	Italian	religious	leader	(d.	1285)October	Al-Nawawi,	Syrian	scholar,	jurist	and	writer	(d.	1277)Adelaide	of	Burgundy,	duchess	of	Brabant	(d.
1273)Choe	Ui,	Korean	military	leader	and	dictator	(d.	1258)Ibn	al-Quff,	Ayyubid	physician	and	surgeon	(d.	1286)Sancho	of	Castile,	archbishop	of	Toledo	(d.	1261)January	6	Matilda	of	Chester,	Countess	of	Huntingdon	(or	Maud),	English	noblewoman	(b.	1171)January	18	Yang	(or	Gongsheng),	Chinese	empress	(b.	1162)February	12	Ermengarde	de
Beaumont,	queen	of	ScotlandMarch	1	Thomas	I	(or	Tommaso),	count	of	Savoy	(b.	1178)May	Simon	of	Joinville,	French	nobleman	and	knight	(b.	1175)June	Yolanda	de	Courtenay,	queen	consort	of	HungaryJuly	8	Konoe	Motomichi,	Japanese	nobleman	(b.	1160)July	26	Wilbrand	of	Oldenburg,	prince-bishop	of	UtrechtJuly	27	Ferdinand	(or	Ferrand),	count
of	Flanders	(b.	1188)July	29	Savari	de	Maulon,	French	nobleman	(b.	1181)July	30	Konrad	von	Marburg,	German	priest	(b.	1180)October	8	Ugo	Canefri,	Italian	health	worker	(b.	1148)October	22	Fujiwara	no	Shunshi,	Japanese	empress	consort	(b.	1209)November	22	Helena,	duchess	of	Brunswick-LneburgNovember	27	Shi	Miyuan,	Chinese	politician
(b.	1164)Ibn	al-Athir,	Seljuk	historian	and	biographer	(b.	1160)Bertran	de	Born	lo	Filhs,	French	troubadour	(b.	1179)Bohemond	IV	("the	One-Eyed"),	prince	of	Antioch	(b.	1175)Gkbri	("Blue-Wolf"),	Ayyubid	general	and	ruler	(b.	1154)Guilln	Prez	de	Guzmn,	Spanish	nobleman	(b.	1180)John	Apokaukos,	Byzantine	bishop	and	theologianMathilde	of
Angoulme,	French	noblewoman	(b.	1181)Sayf	al-Din	al-Amidi,	Ayyubid	scholar	and	jurist	(b.	1156)William	Comyn,	Scoto-Norman	nobleman	(b.	1163)^	Steven	Runciman	(1952).	A	History	of	The	Crusades.	Vol	III:	The	Kingdom	of	Acre,	pp.	169170.	ISBN978-0-241-29877-0.^	Berend,	Nora	(2001).	At	the	Gate	of	Christendom:	Jews,	Muslims	and
"Pagans"	in	Medieval	Hungary,	c.	1000-c.1300.	Cambridge	University	Press.	p.158.	ISBN978-0-521-02720-5.^	Lourie,	Elena	(2004).	Jews,	Muslims,	and	Christians	in	and	around	the	Crown	of	Aragon:	essays	in	honour	of	Professor	Elena	Lourie.	Brill.	p.270.	ISBN90-04-12951-0.[permanent	dead	link]Retrieved	from	"	3One	hundred	years,	from	1101	to
1200See	also:	Renaissance	of	the	12th	centuryMillennia2ndmillenniumCenturies11thcentury12thcentury13thcenturyTimelines11thcentury12thcentury13thcenturyState	leaders11thcentury12thcentury13thcenturyDecades1100s1110s1120s1130s1140s1150s1160s1170s1180s1190sCategories:Births	Deaths	Establishments	DisestablishmentsvteEastern
Hemisphere	at	the	beginning	of	the	12th	centuryThe	12th	century	is	the	period	from	1101	to	1200	in	accordance	with	the	Julian	calendar.	In	the	history	of	European	culture,	this	period	is	considered	part	of	the	High	Middle	Ages	and	overlaps	with	what	is	often	called	the	"'Golden	Age'	of	the	Cistercians".	The	Golden	Age	of	Islam	experienced
significant	development,	particularly	in	Islamic	Spain.In	Song	dynasty	China,	an	invasion	by	Jurchens	caused	a	political	schism	of	north	and	south.	The	Khmer	Empire	of	Cambodia	flourished	during	this	century,	while	the	Fatimids	of	Egypt	were	overtaken	by	the	Ayyubid	dynasty.	Following	the	expansions	of	the	Ghaznavids	and	Ghurid	Empire,	the
Muslim	conquests	in	the	Indian	subcontinent	took	place	at	the	end	of	the	century.The	Ghurid	Empire	converted	to	Islam	from	Buddhism.1101:	In	July,	the	Treaty	of	Alton	is	signed	between	Henry	I	of	England	and	his	older	brother	Robert,	Duke	of	Normandy	in	which	Robert	agrees	to	recognize	Henry	as	king	of	England	in	exchange	for	a	yearly	stipend
and	other	concessions.	The	agreement	temporarily	ends	a	crisis	in	the	succession	of	the	Anglo-Norman	kings.11011103:	David	the	Builder	takes	over	Kakheti	and	Hereti	(now	parts	of	Georgia).1102:	King	Coloman	unites	Hungary	and	Croatia	under	the	Hungarian	Crown.1102:	Muslims	conquer	Seoro	de	Valencia.11031104:	A	church	council	is
convened	by	King	David	the	Builder	in	Urbnisi	to	reorganize	the	Georgian	Orthodox	Church.1104:	In	the	Battle	of	Ertsukhi,	King	David	the	Builder	defeats	an	army	of	Seljuks.1104:	King	Jayawarsa	of	Kadiri	(on	Java)	ascends	to	the	throne.[citation	needed]1106:	Battle	of	Tinchebray.11071111:	Sigurd	I	of	Norway	becomes	the	first	Norwegian	king	to
embark	on	a	crusade	to	the	Holy	Land.	He	fights	in	Lisbon	and	on	various	Mediterranean	isles	and	helps	the	King	of	Jerusalem	to	take	Sidon	from	the	Muslims.1108:	By	the	Treaty	of	Devol,	signed	in	September,	Bohemond	I	of	Antioch	has	to	submit	to	the	Byzantine	Empire,	becoming	the	vassal	of	Alexius	I.1109:	On	June	10,	Bertrand	of	Toulouse
captures	the	County	of	Tripoli	(northern	Lebanon/western	Syria).1109:	In	the	Battle	of	Nako,	Boleslaus	III	Wrymouth	defeats	the	Pomeranians	and	re-establishes	Polish	access	to	the	sea.1109:	On	August	24,	in	the	Battle	of	Hundsfeld,	Boleslaus	III	Wrymouth	defeats	Emperor	Henry	V	of	Germany	and	stops	German	expansion	eastward.1111:	On	April
14,	during	Henry	V's	first	expedition	to	Rome,	he	is	crowned	Holy	Roman	Emperor.1113:	Paramavishnulok	is	crowned	as	King	Suryavarman	II	in	Cambodia.	He	expands	the	Khmer	Empire	and	builds	Angkor	Wat	during	the	first	half	of	the	century.	He	establishes	diplomatic	relations	with	China.1115:	The	Georgian	army	occupies	Rustavi	in	the	war
with	the	Muslims.1115:	In	Java,	King	Kamesvara	of	Kadiri	ascends	to	the	throne.	Janggala	ceases	to	exist	and	comes	under	Kadiri	domination,	highly	possible	under	royal	marriage.	During	his	reign,	Mpu	Dharmaja	writes	Kakawin	Smaradahana,	a	eulogy	for	the	king	which	become	the	inspiration	for	the	Panji	cycle	tales,	which	spread	across	Southeast
Asia.[1]1116:	The	Byzantine	army	defeats	the	Turks	at	Philomelion.1116:	Death	of	doa	Jimena	Daz,	governor	of	Valencia	from	1099	to	1102.c.	1119:	The	Knights	Templar	are	founded	to	protect	Christian	pilgrims	in	Jerusalem.A	Black	and	White	Photo	of	the	12th	century	Cuenca	Cathedral	(built	from	1182	to	1270)	in	Cuenca,	Spain1120:	On	January
16,	the	Council	of	Nablus,	a	council	of	ecclesiastic	and	secular	lords	in	the	crusader	Kingdom	of	Jerusalem,	establishes	the	first	written	laws	for	the	kingdom.1120:	On	November	25,	William	Adelin,	the	only	legitimate	son	of	King	Henry	I	of	England,	drowns	in	the	White	Ship	Disaster,	leading	to	a	succession	crisis	which	will	bring	down	the	Norman
monarchy	of	England.1121:	On	August	12,	in	the	Battle	of	Didgori,	the	greatest	military	victory	in	Georgian	history,	King	David	the	Builder	with	45,000	Georgians,	15,000	Kipchak	auxiliaries,	500	Alan	mercenaries	and	100	French	Crusaders	defeats	a	much	larger	Seljuk-led	Muslim	coalition	army.1121:	On	December	25,	St.	Norbert	and	29
companions	make	their	solemn	vows	in	Premontre,	France,	establishing	the	Premonstratensian	Order.1122:	The	Battle	of	Beroia	(Modern-day	Stara	Zagora,	Bulgaria)	results	in	the	disappearance	of	the	Pechenegs	Turkish	tribe	as	an	independent	force.1122:	On	September	23,	the	Concordat	of	Worms	(Pactum	Calixtinum)	is	drawn	up	between
Emperor	Henry	V	and	Pope	Calixtus	II	bringing	an	end	to	the	first	phase	of	the	power	struggle	between	the	papacy	and	the	Holy	Roman	Empire.1122:	King	David	the	Builder	captures	Tbilisi	and	declares	it	the	capital	city	of	Georgia,	ending	400	years	of	Arab	rule.1123:	The	Jurchen	dynasty	of	China	forces	Koryo	(now	Korea)	to	recognize	their
suzerainty.1124:	In	April	or	May,	David	I	is	crowned	King	of	the	Scots.1125:	On	June	11,	in	the	Battle	of	Azaz,	the	Crusader	states,	led	by	King	Baldwin	II	of	Jerusalem,	defeat	the	Seljuk	Turks.1125:	In	November,	the	Jurchens	of	the	Jin	dynasty	declare	war	on	the	Song	dynasty,	beginning	the	JinSong	wars.1125:	Lothair	of	Supplinburg,	duke	of	Saxony,
is	elected	Holy	Roman	Emperor	instead	of	the	nearest	heir,	Frederick	of	Swabia,	beginning	the	great	struggle	between	Guelphs	and	Ghibellines.1127:	The	Northern	Song	dynasty	loses	power	over	northern	China	to	the	Jin	dynasty.1128:	On	June	24,	the	Kingdom	of	Portugal	gains	independence	from	the	Kingdom	of	Len	at	the	Battle	of	So	Mamede;
(recognised	by	Len	in	1143).The	temple	complex	of	Angkor	Wat,	built	during	the	reign	of	Suryavarman	II	in	Cambodia	of	the	Khmer	Era.11301180:	50-year	drought	in	what	is	now	the	American	Southwest.11301138:	Papal	schism,	Pope	Innocent	II	vs.	Antipope	Anacletus	II.1130:	On	March	26,	Sigurd	I	of	Norway	dies.	A	golden	era	of	95	years	comes

to	an	end	for	Norway	as	civil	wars	between	the	members	of	Harald	Fairhair's	family	line	rage	for	the	remainder	of	the	century.1130:	On	Christmas	Day,	Roger	II	is	crowned	King	of	Sicily,	the	royal	title	being	bestowed	on	him	by	Antipope	Anacletus	II.1132:	The	Southern	Song	dynasty	establishes	China's	first	permanent	standing	navy,	although	China
had	a	long	naval	history	prior.	The	main	admiral's	office	is	at	the	port	of	Dinghai.11321183:	the	Chinese	navy	increases	from	a	mere	3,000	to	52,000	marine	soldiers	stationed	in	20	different	squadrons.	During	this	time,	hundreds	of	treadmill-operated	paddle	wheel	craft	are	assembled	for	the	navy	to	fight	the	Jin	dynasty	in	the	north.1135:	King
Jayabaya	of	Kadiri	ascends	to	the	throne.[2]11351154:	The	Anarchy	takes	place,	during	a	period	of	civil	war	in	England.1136:	Suger	begins	rebuilding	the	abbey	church	at	St	Denis	north	of	Paris,	which	is	regarded	as	the	first	major	Gothic	building.1137:	On	July	22,	the	future	King	Louis	VII	of	France	marries	Eleanor,	the	Duchess	of	Aquitaine.1138:
On	October	11,	the	1138	Aleppo	earthquake	devastates	much	of	northern	Syria.1139:	in	April,	the	Second	Lateran	Council	ends	the	papal	schism.1139:	On	July	5,	in	the	Treaty	of	Mignano,	Pope	Innocent	II	confirms	Roger	II	as	King	of	Sicily,	Duke	of	Apulia,	and	Prince	of	Capua	and	invests	him	with	his	titles.1139:	On	July	25,	the	Portuguese	defeat	the
Almoravids	led	by	Ali	ibn	Yusuf	in	the	Battle	of	Ourique;	Prince	Afonso	Henriques	is	acclaimed	King	of	Portugal	by	his	soldiers.Averroes	in	a	14th-century	painting	by	Andrea	di	Bonaiuto11401150:	Collapse	of	the	Ancestral	Puebloan	culture	at	Chaco	Canyon	(modern-day	New	Mexico).1141:	The	Treaty	of	Shaoxing	ends	the	conflict	between	the	Jin
dynasty	and	Southern	Song	dynasty,	legally	establishing	the	boundaries	of	the	two	countries	and	forcing	the	Song	dynasty	to	renounce	all	claims	to	its	former	territories	north	of	the	Huai	River.	The	treaty	reduces	the	Southern	Song	into	a	quasi-tributary	state	of	the	Jurchen	Jin	dynasty.1143:	Manuel	I	Komnenos	is	crowned	as	Byzantine	emperor	after
the	death	of	John	II	Komnenos.1143:	Afonso	Henriques	is	proclaimed	King	of	Portugal	by	the	cortes.1143:	The	Treaty	of	Zamora	recognizes	Portuguese	independence	from	the	Kingdom	of	Len.	Portugal	also	recognizes	the	suzerainty	of	the	pope.1144:	On	December	24,	Edessa	falls	to	the	Atabeg	Zengi.11451148:	The	Second	Crusade	is	launched	in
response	to	the	fall	of	the	County	of	Edessa.1147:	On	October	25,	the	four-month-long	Siege	of	Lisbon	successfully	brings	the	city	under	definitive	Portuguese	control,	expelling	the	Moorish	overlords.1147:	A	new	Berber	dynasty,	the	Almohads,	led	by	Emir	Abd	al-Mu'min,	takes	North	Africa	from	the	Almoravides	and	soon	invades	the	Iberian
Peninsula.	The	Almohads	began	as	a	religious	movement	to	rid	Islam	of	impurities.1147:	The	Wendish	Crusade	against	the	Polabian	Slavs	(or	"Wends")	in	what	is	now	northern	and	eastern	Germany.1150:	Ramon	Berenguer	IV,	Count	of	Barcelona	marries	Petronilla,	the	Queen	of	Aragon.1151:	The	Treaty	of	Tudiln	is	signed	by	Alfonso	VII	of	Len	and
Raymond	Berengar	IV,	Count	of	Barcelona,	recognizing	the	Aragonese	conquests	south	of	the	Jcar	and	the	right	to	expand	in	and	annex	the	Kingdom	of	Murcia.1153:	The	Treaty	of	Wallingford,	ends	the	civil	war	between	Empress	Matilda	and	her	cousin	King	Stephen	of	England	fought	over	the	English	crown.	Stephen	acknowledges	Matilda's	son
Henry	of	Anjou	as	heir.1153:	The	First	Treaty	of	Constance	is	signed	between	Emperor	Frederick	I	and	Pope	Eugene	III,	by	the	terms	of	which,	the	emperor	is	to	prevent	any	action	by	Manuel	I	Comnenus	to	reestablish	the	Byzantine	Empire	on	Italian	soil	and	to	assist	the	pope	against	his	enemies	in	revolt	in	Rome.1154:	the	Moroccan-born	Muslim
geographer	Muhammad	al-Idrisi	publishes	his	Geography.1154:	On	December	27,	Henry	II	is	crowned	King	of	England	at	Westminster	Abbey.1155:	Pope	Adrian	IV	grants	overlordship	of	Ireland	to	Henry	II	of	England	in	the	bull	Laudabiliter.1156:	On	June	18,	the	Treaty	of	Benevento	is	entered	into	by	Pope	Adrian	IV	and	the	Norman	Kingdom	of
Sicily.	After	years	of	turbulent	relations,	the	popes	finally	settles	down	to	peace	with	the	Hauteville	kings.	The	kingship	of	William	I	is	recognized	over	all	Sicily,	Apulia,	Calabria,	Campania,	and	Capua.	The	tribute	to	the	pope	of	600	schifati	agreed	upon	by	Roger	II	in	1139	at	Mignano	is	affirmed	and	another	400	shift	is	added	for	the	new	lands.1158:
The	Treaty	of	Sahagn	ends	the	war	between	Castile	and	Len.The	Liuhe	Pagoda	of	Hangzhou,	China,	11651161:	the	Song	dynasty	Chinese	navy,	employing	gunpowder	bombs	launched	from	trebuchets,	defeats	the	enormous	Jin	dynasty	navy	in	the	East	China	Sea	in	the	Battle	of	Tangdao	and	on	the	Yangtze	River	in	the	Battle	of	Caishi.1161:	Kilij	Arslan
II,	Sultan	of	Rum,	makes	peace	with	the	Byzantine	Empire,	recognizing	the	emperor's	primacy.1161:	In	the	siege	of	Ani,	troops	from	the	Kingdom	of	Georgia	take	control	over	the	city,	only	to	have	it	sold	for	the	second	time	to	the	Shaddadids,	a	Kurdish	dynasty.1162:	Genghis	Khan,	the	founder	of	the	Mongol	Empire,	is	born	as	Temjin	in	present-day
Mongolia.1163:	The	Norwegian	Law	of	Succession	takes	effect.11651182:	Tensions	and	disputes	between	the	Pagan	Empire	and	the	Kingdom	of	Polonnaruwa	causes	the	Sinhalese	under	Parakramabahu	the	Great	to	raid	Burma.1168:	King	Valdemar	I	of	Denmark	conquers	Arkona	on	the	Island	of	Rgen,	the	strongest	pagan	fortress	and	temple	in
northern	Europe.1169:	Political	disputes	within	the	Pandya	Empire	sparks	the	decade-long	Pandyan	Civil	War.1169:	On	May	1,	the	Norman	invasion	of	Ireland	begins.	Richard	fitzGilbert	de	Clare	('Strongbow')	allies	with	the	exiled	Irish	chief,	Dermot	MacMurrough,	to	help	him	recover	his	kingdom	of	Leinster.The	defense	of	the	Carroccio	during	the
battle	of	Legnano	(1176)	by	Amos	Cassioli	(18321891)1170:	The	Treaty	of	Sahagn	is	signed	by	Alfonso	VIII	of	Castile	and	Alfonso	II	of	Aragon.	Based	on	the	terms	of	the	accord,	Alfonso	VIII	agrees	to	provide	Alfonso	II	with	three	hostages,	to	be	used	as	tribute	payments	owed	by	Ibn	Mardan	of	Valencia	and	Murcia.1170:	On	December	29,	Thomas
Becket	is	murdered	in	Canterbury	Cathedral.1171:	Saladin	deposes	the	last	Fatimid	Caliph	Al-'id	and	establishes	the	Ayyubid	dynasty.1171:	On	November	11,	Henry	II	of	England	lands	in	Ireland	to	assert	his	claim	as	Lord	of	Ireland.1172:	The	Pandyan	city	of	Madurai	is	sacked	by	the	Sinhalese	army	due	to	an	attempt	to	drive	off	the	rival	throne
claimant,	Kulasekara	Pandyan.1173:	Sinhalese	king	Parakramabahu	the	Great	gains	a	decisive	victory	by	invading	the	Chola	Empire	as	an	ally	of	the	Pandyas	in	the	Pandyan	Civil	War.1174:	On	July	12,	William	I	of	Scotland	is	captured	by	the	English	in	the	Battle	of	Alnwick.	He	accepts	the	feudal	overlordship	of	the	English	crown	and	pays	ceremonial
allegiance	at	York.1175:	Hnen	Shnin	(Genk)	founds	the	Jdo	sh	(Pure	Land)	sect	of	Buddhism.1175:	The	Treaty	of	Windsor	is	signed	by	King	Henry	II	of	England	and	the	High	King	of	Ireland,	Ruaidr	Ua	Conchobair.1176:	On	May	29,	Frederick	Barbarossa's	forces	are	defeated	in	the	Battle	of	Legnano	by	the	Lombard	League	which	results	in	the
emperor's	acknowledgment	of	the	pope's	sovereignty	over	the	Papal	States	and	Alexander	acknowledging	the	emperor's	overlordship	of	the	imperial	Church.1176:	On	September	17,	The	Battle	of	Myriokephalon	(Myriocephalum;	Turkish:	Miryakefalon	Sava)	is	fought	between	the	Byzantine	Empire	and	the	Seljuk	Turks	in	Phrygia.	It	is	a	serious
reversal	for	the	Byzantine	forces	and	will	be	the	final,	unsuccessful,	effort	by	the	Byzantines	to	recover	the	interior	of	Anatolia	from	the	Seljuk	Turks.1177:	The	Treaty	or	Peace	of	Venice	is	signed	by	the	papacy	and	its	allies,	and	Frederick	I,	Holy	Roman	Emperor.	The	Norman	Kingdom	of	Sicily	also	participates	in	negotiations	and	the	treaty	thereby
determines	the	political	course	of	all	of	Italy	for	the	next	several	years.1178:	Chinese	writer	Zhou	Qufei,	a	Guangzhou	customs	officer,	writes	of	an	island	far	west	in	the	Indian	Ocean	(possibly	Madagascar),	from	where	people	with	skin	"as	black	as	lacquer"	and	with	frizzy	hair	were	captured	and	purchased	as	slaves	by	Arab	merchants.1179:	The
Treaty	of	Cazola	(Cazorla)	is	signed	by	Alfonso	II	of	Aragon	and	Alfonso	VIII	of	Castile,	dividing	Andalusia	into	separate	zones	of	conquest	for	the	two	kingdoms,	so	that	the	work	of	the	Reconquista	would	not	be	stymied	by	internecine	feuding.1180:	The	Portuguese	Navy	defeats	a	Muslim	fleet	off	the	coast	of	Cape	Espichel.11801185:	the	Genpei	War
in	Japan.1181:	Parakramabahu	the	Great	conducts	a	large-scale	raid	on	Burma,	after	a	ship	transporting	a	Sinhalese	princess	to	the	Khmer	Empire	is	attacked	by	Burmese	naval	fleets.1182:	Religious	reformations	of	Theravada	Buddhism	in	Pagan	Burma	under	the	patronage	of	Narapatisithu	are	continued	with	the	end	of	the	Polonnaruwa-Pagan
War.1182:	Revolt	of	the	people	of	Constantinople	against	the	Latins,	whom	they	massacre,	proclaiming	Andronicus	I	Comnenus	as	co-emperor.1183:	On	January	25,	the	final	Peace	of	Constance	between	Frederick	Barbarossa,	the	pope	and	the	Lombard	towns	is	signed,	confirming	the	Peace	of	Venice	of	1177.1183:	On	September	24,	Andronicus	I
Comnenus	has	his	nephew	Alexius	II	Comnenus	strangled.1184:	On	March	24,	Queen	Tamar,	King	of	Georgia,	accedes	to	the	throne	as	sole	ruler	after	reigning	with	her	father,	George	III,	for	six	years.1184:	Diet	of	Pentecost	organised	by	Emperor	Frederick	I	in	Mainz.1185:	The	Uprising	of	Asen	and	Peter	against	the	Byzantine	Empire	leads	to	the
restoration	of	the	Bulgarian	Empire.1185:	Andronicus	I	Comnenus	is	deposed	and,	on	September	12,	executed	as	a	result	of	the	Norman	massacre	of	the	Greeks	of	Thessalonika.1185:	The	cathedral	school	(Katedralskolan)	in	Lund,	Sweden,	is	founded.	The	school	is	the	oldest	in	northern	Europe	and	one	of	the	oldest	in	all	of	Europe.1185:	Beginning	in
this	year	the	Kamakura	shogunate	deprives	the	emperor	of	Japan	of	political	power.1186:	On	January	27,	the	future	Holy	Roman	Emperor	Henry	VI	marries	Constance	of	Sicily,	the	heiress	to	the	Sicilian	throne.1187:	On	July	4,	in	the	Battle	of	Hattin,	Saladin	defeats	the	king	of	Jerusalem.1187:	In	August,	the	Swedish	royal	and	commercial	center
Sigtuna	is	attacked	by	raiders	from	Karelia,	Couronia,	and/or	Estonia.[3]1188:	The	Riah	were	introduced	into	the	Habt	and	south	of	Tetouan	by	the	Almohad	caliph,	Abu	Yusuf	Yaqub	al-Mansur,	and	Jochem	and	Acem	were	introduced	in	Tamesna.[4]1189:	On	September	3,	Richard	I	is	crowned	King	of	England	at	Westminster.1189:	On	November	11,
William	II	of	Sicily	dies	and	is	succeeded	by	his	illegitimate	cousin	Tancred,	Count	of	Lecce	instead	of	Constance.11891192:	The	Third	Crusade	is	an	attempt	by	European	leaders	to	wrest	the	Holy	Land	from	Saladin.Richard	I	of	England,	or	Richard	the	Lionheart.1190:	On	June	10,	Emperor	Frederick	Barbarossa	drowns	in	the	River	Salef,	leaving	the
Crusader	army	under	the	command	of	the	rivals	Philip	II	of	France	and	Richard	I	of	England,	which	ultimately	leads	to	the	dissolution	of	the	army.1191:	Holy	Roman	Emperor	Henry	VI	attacked	the	Kingdom	of	Sicily	from	May	to	August	but	fails	and	withdrawn,	with	Empress	Constance	captured	(released	1192).1191:	On	September	7,	Saladin	is
defeated	by	Richard	I	of	England	at	the	Battle	of	Arsuf.1192:	In	April,	Isabella	I	begins	her	reign	as	Christian	Queen	of	the	Kingdom	of	Jerusalem1192:	In	the	Battle	of	Jaffa,	King	Richard	the	Lionheart	defeats	Saladin.1192:	In	June,	the	Treaty	of	Ramla	is	signed	by	Saladin	and	Richard	Lionheart.	Under	the	terms	of	the	agreement,	Jerusalem	will
remain	under	Muslim	control.	However,	the	city	will	be	open	to	Christian	pilgrims.	The	Latin	Kingdom	is	reduced	to	a	coastal	strip	that	extends	from	Tyre	to	Jaffa.1192:	Minamoto	no	Yoritomo	is	appointed	Sei-i	Taishgun,	"barbarian-subduing	great	general",	shgun	for	short,	the	first	military	dictator	to	bear	this	title.1192:	Sultan	Shahbuddin
Muhammad	Ghori	establishes	the	first	Muslim	empire	in	India	for	14	years	(11921206)	by	defeating	Prithviraj	Chauhan.1193:	Nalanda,	the	great	Indian	Buddhist	educational	centre,	is	destroyed.1194:	Emperor	Henry	VI	conquers	the	Kingdom	of	Sicily.1195:	On	June	16,	the	struggle	of	Shamqori.	Georgian	forces	annihilate	the	army	of	Abu
Baqar.1198:	The	brethren	of	the	Crusader	hospital	in	Acre	are	raised	to	a	military	order	of	knights,	the	Teutonic	Knights,	formally	known	as	the	Order	of	the	Knights	of	the	Hospital	of	St.	Mary	of	the	Teutons	in	Jerusalem.1199:	Pope	Innocent	III	writes	to	Kaloyan,	inviting	him	to	unite	the	Bulgarian	Church	with	the	Roman	Catholic	Church.1200:
Construction	begins	on	the	Grand	Village	of	the	Natchez	near	Natchez,	Mississippi.	This	ceremonial	center	for	the	Natchez	people	is	occupied	and	built	until	the	early	17th	century.[5]Eastern	Hemisphere	at	the	end	of	the	12th	centuryChina	is	under	the	Northern	Song	dynasty.	Early	in	the	century,	Zhang	Zeduan	paints	Along	the	River	During	the
Qingming	Festival.	It	will	later	end	up	in	the	Palace	Museum,	Beijing.In	southeast	Asia,	there	is	conflict	between	the	Khmer	Empire	and	the	Champa.	Angkor	Wat	is	built	under	the	Hindu	king	Suryavarman	II.	By	the	end	of	the	century,	the	Buddhist	Jayavarman	VII	becomes	the	ruler.Japan	is	in	its	Heian	period.	The	Chj-jinbutsu-giga	is	made	and
attributed	to	Toba	Sj.	It	ends	up	at	the	Kzan-ji,	Kyoto.In	Oceania,	the	Tui	Tonga	Empire	expands	to	a	much	greater	area.Europe	undergoes	the	Renaissance	of	the	12th	century.	The	blast	furnace	for	the	smelting	of	cast	iron	is	imported	from	China,	appearing	around	Lapphyttan,	Sweden,	as	early	as	1150.Alexander	Neckam	is	the	first	European	to
document	the	mariner's	compass,	first	documented	by	Shen	Kuo	during	the	previous	century.Christian	humanism	becomes	a	self-conscious	philosophical	tendency	in	Europe.	Christianity	is	also	introduced	to	Estonia,	Finland,	and	Karelia.The	first	medieval	universities	are	founded.	Pierre	Abelard	teaches.Middle	English	begins	to	develop,	and	literacy
begins	to	spread	outside	the	Church	throughout	Europe.[6]	In	addition,	churchmen	are	increasingly	willing	to	take	on	secular	roles.	By	the	end	of	the	century,	at	least	a	third	of	England's	bishops	also	act	as	royal	judges	in	secular	matters.[7]The	Ars	antiqua	period	in	the	history	of	the	medieval	music	of	Western	Europe	begins.The	earliest	recorded
miracle	play	is	performed	in	Dunstable,	England.Gothic	architecture	and	trouvre	music	begin	in	France.During	the	middle	of	the	century,	the	Cappella	Palatina	is	built	in	Palermo,	Sicily,	and	the	Madrid	Skylitzes	manuscript	illustrates	the	Synopsis	of	Histories	by	John	Skylitzes.Fire	and	plague	insurance	first	become	available	in	Iceland,	and	the	first
documented	outbreaks	of	influenza	there	happens.The	medieval	state	of	Serbia	is	formed	by	Stefan	Nemanja	and	then	continued	by	the	Nemanji	dynasty.By	the	end	of	the	century,	both	the	Capetian	dynasty	and	the	House	of	Anjou	are	relying	primarily	on	mercenaries	in	their	militaries.	Paid	soldiers	are	available	year-round,	unlike	knights	who
expected	certain	periods	off	to	maintain	their	manor	lifestyles.[8]In	India,	Hoysala	architecture	reaches	its	peak.In	the	Middle	East,	the	icon	of	Theotokos	of	Vladimir	is	painted	probably	in	Constantinople.	Everything	but	the	faces	will	later	be	retouched,	and	the	icon	will	go	to	the	Tretyakov	Gallery	of	Moscow.The	Georgian	poet	Shota	Rustaveli
composes	his	epic	poem	The	Knight	in	the	Panther's	Skin.Shahab	al-Din	Suhrawardi	founds	his	"school	of	illumination".In	North	Africa,	the	kasbah	of	Marrakesh	is	built,	including	the	city	gate	Bab	Agnaou	and	the	Koutoubia	mosque.In	sub-Saharan	Africa,	Kente	cloth	is	first	woven.In	France,	the	first	piedfort	coins	were	minted.The	city	of	Tula	burns
down,	marking	the	end	of	the	Toltec	EmpireIn	West	Africa	the	Ife	Empire	is	established.See	also:	Timeline	of	historic	inventions	12th	century1104:	The	Venice	Arsenal	of	Venice,	Italy,	is	founded.	It	employed	some	16,000	people	for	the	mass	production	of	sailing	ships	in	large	assembly	lines,	hundreds	of	years	before	the	Industrial	Revolution.1106:
Finished	building	of	Gelati.1107:	The	Chinese	engineer	Wu	Deren	combines	the	mechanical	compass	vehicle	of	the	south-pointing	chariot	with	the	distance-measuring	odometer	device.1111:	The	Chinese	Donglin	Academy	is	founded.1165:	The	Liuhe	Pagoda	of	Hangzhou,	China,	is	built.1170:	The	Roman	Catholic	notion	of	Purgatory	is	defined.[9]1185:
First	record	of	windmills.Wikimedia	Commons	has	media	related	to	12th	century.^	Soekmono,	R,	Drs.,	Pengantar	Sejarah	Kebudayaan	Indonesia	2,	2nd	ed.	Penerbit	Kanisius,	Yogyakarta,	1973,	5th	reprint	edition	in	1988	p.57^	Britannica,	T.	Editors	of	Encyclopaedia	(1998,	July	20).	Kairi.	Encyclopedia	Britannica.^	Enn	Tarvel	(2007).	Sigtuna
hukkumine.	Archived	2017-10-11	at	the	Wayback	Machine	Haridus,	2007	(7-8),	p	3841^	Notice	sur	les	Arabes	hilaliens.	Ismal	Hamet.	p.248.^	Francine	Weiss	and	Mark	R.	Barnes	(May	3,	1989).	"National	Register	of	Historic	Places	Registration:	Grand	Village	of	the	Natchez	Site	/	Fatherland	Plantation	Site	(22-Ad-501)"	(pdf).	National	Park	Service.
and	Accompanying	3	photos,	from	1989.(680KB)^	Warren	1961,	p.129.^	Warren	1961,	p.159.^	Warren	1961,	p.60-61.^	Le	Goff,	Jacques	(1986).	The	Birth	of	Purgatory.	Chicago:	University	of	Chicago	Press.	ISBN0226470822.Warren,	Wilfred	Lewis	(1961).	King	John.	University	of	California	Press.	p.362.	ISBN9780520036437.	{{cite	book}}:	ISBN	/
Date	incompatibility	(help)Retrieved	from	"	4The	following	pages	link	to	12th	century	External	tools(link	counttransclusion	countsorted	list)	See	help	page	for	transcluding	these	entriesShowing	50	items.View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)Antisemitism	in	Christianity	(links	|	edit)Catharism	(links	|	edit)List	of	decades,	centuries,	and
millennia	(links	|	edit)Dialect	(links	|	edit)House	of	Habsburg	(links	|	edit)House	of	Hohenzollern	(links	|	edit)History	of	Mali	(links	|	edit)Maimonides	(links	|	edit)Passport	(links	|	edit)Sumba	(links	|	edit)Taoism	(links	|	edit)Weregild	(links	|	edit)Zanzibar	(links	|	edit)20th	century	(links	|	edit)1040	(links	|	edit)15th	century	(links	|	edit)16th	century	(links
|	edit)17th	century	(links	|	edit)18th	century	(links	|	edit)14th	century	(links	|	edit)1st	century	(links	|	edit)13th	century	(links	|	edit)4th	century	(links	|	edit)11th	century	(links	|	edit)1282	(links	|	edit)7th	century	(links	|	edit)10th	century	(links	|	edit)9th	century	(links	|	edit)8th	century	(links	|	edit)6th	century	(links	|	edit)5th	century	(links	|	edit)3rd
century	(links	|	edit)2nd	century	(links	|	edit)4th	century	BC	(links	|	edit)1st	century	BC	(links	|	edit)2nd	century	BC	(links	|	edit)3rd	century	BC	(links	|	edit)5th	century	BC	(links	|	edit)6th	century	BC	(links	|	edit)21st	century	BC	(links	|	edit)11th	century	BC	(links	|	edit)1000s	(decade)	(links	|	edit)1040s	(links	|	edit)1299	(links	|	edit)1154	(links	|
edit)1163	(links	|	edit)1160s	(links	|	edit)1141	(links	|	edit)1135	(links	|	edit)1204	(links	|	edit)View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)Retrieved	from	"	WhatLinksHere/12th_century"	Introduced	in	2023,	SwiftData	is	the	latest	addition	to	the	range	of	database	framework	options	in	Swift,	Apples	primary	programming	language	for	iOS.
Built	on	top	of	Core	Data,	two	levels	above	SQLite,	its	great	for	simplifying	our	persistent	stores	and	it	allows	us	to	use	declarative	code,	which	is	a	really	useful	time-saver.	However,	for	all	its	flexible	functionality,	SwiftData	framework	presents	certain	challenges	for	us	devs,	particularly	if	were	migrating	from	other	database	tools.	So	here,	were
going	to	walk	you	through	the	basics	of	SwiftData,	so	you	can	jump-start	your	learning	and	feel	confident	whenever	you	use	this	amazing	framework	that	simplifies	data	persistence	and	makes	app	development	easier	without	the	deep	knowledge	required	to	master	Core	Data.	Well,	there	are	lots!	But	here	some	of	the	benefits	that	will	really	impact
your	day-to-day	work.	You	can	use	SwiftData	with	minimal	code,	enabling	you	divert	your	creative	energies	to	other	aspects	of	your	sprint.	You	can	write	the	entire	model	layer	(essentially,	the	business	logic	bit)	of	your	app	with	just	this	one	framework.	There	are	no	external	file	formats	to	worry	about.	Its	got	SwiftUI	integration	baked	in.	In	fact,	its
pretty	much	Swift-native.	The	syntax	is	easy	to	get	to	grips	with.	So,	basically,	itll	save	you	a	lot	of	time	and	remove	a	lot	of	the	pain-points	youll	find	with	other	frameworks.	Which	means	you	can	build	clean,	robust	and	reliable	apps	more	quickly.	In	this	article	were	going	to	look	at	how	to	build	a	SwiftData	model	database	for	a	simplified	version	of	a
social	media	Post.	For	the	purpose	of	this	demonstration,	well	need	to	persist	(preserve	data	once	the	program	has	stopped)	with	just	three	objects:	form	our	basic	schema:	A	Post	that	will	have:	A	title	An	author	A	list	of	likes	.	A	User	that	will:	Have	a	username	Follow	other	Users	.	Like	objects	that:	Have	a	date	Are	associated	with	a	User.	Before
SwiftData	can	persist	the	objects	in	our	database,	well	need	to	create	well	need	to	create	each	object	as	the	model	class	shown	below::	struct	Post	{	var	author:	User	var	likes:	[Like]	var	title:	String}struct	User	{	var	username:	String	var	follows:	[User]}struct	Like	{	var	user:	User	var	date:	Date}	Weve	created	the	objects	of	our	schema	as	Structs,
but	to	make	them	SwiftData-compliant	theyll	need	to	be	considered	SwiftData	Objects.	This	means	making	them	@Model	objects,	which	is	done	by	simply	adding	@Model	,	as	you	can	see	below:	@Model	struct	Post	{	var	author:	User	var	likes:	[Like]	var	title:	String}	@Model	struct	User	{	var	username:	String	var	follows:	[User]}@Model	struct	Like
{	var	user:	User	var	date:	Date}	After	weve	added	@Model	the	compiler	will	return	the	following	error:	@Model	requires	an	initializer	be	provided	for	'Post'@Model	requires	an	initializer	be	provided	for	'User'@Model	requires	an	initializer	be	provided	for	'Like'	Dont	worry,	this	is	expected	behavior.	@Model	requires	all	structs	have	both	implicit	and
explicit	initializers	associated	with	them,	and	we	can	solve	the	issue	by	adding	an	explicit	initializer	to	our	model	type:	@Model	struct	Post	{	var	author:	User	var	likes:	[Like]	var	title:	String	init(author:	User,	likes:	[Like],	title:	String)	{	self.author	=	author	self.likes	=	likes	self.title	=	title	}}@Model	struct	User	{	var	username:	String	var	follows:
[User]	init(username:	String,	follows:	[User]	=	[])	{	self.username	=	usernameself.follows	=	follows	}}@Model	struct	Like	{	var	user:	User	var	date:	Date	init(user:	User,	date:	Date	=	Date.now)	{	self.user	=	user	self.date	=	date	}}	The	@Model	we	have	used	is	one	of	the	schema	macros	provided	by	SwiftData	framework,	these	schema	macros	add
functionality	to	our	model	classes	without	requiring	the	developer	to	code	complex	strategies.	Now	the	SwiftData	model	classes	are	ready,	its	time	to	prepare	our	app	to	store	them	by	making	the	app	a	ModelContainer.	To	do	this,	simply	go	to	the	root	of	the	app	and	add	the	line	below:	@mainstruct	SwiftDataApp:	App	{	var	body:	some	Scene	{
WindowGroup	{	ContentView()	}	.modelContainer	(for:	[Post.self,	User.self,	Like.self])	}}	Great!	Now	the	app	is	a	SwiftData	modelContainer	making	our	app	a	model	container,	which	means	it	can	store	SwiftData	objects	and	its	a	persistent	store.	As	the	Swift	Macro	provides	a	convenient	user	interface,	we	dont	really	need	**to	know	what	the
@Model	macro	adds	to	our	types.	However,	we	can	easily	check	by	right-clicking	the	Macro	and	choosing	expand	Macro.	Now	our	data	models	are	configured,	lets	see	how	can	we	use	them	to	store,	read	and	delete	objects.	Having	set	up	the	modelContainer,	we	can	access	the	modelContext	in	any	view	we	choose.	In	this	example,	well	create	a	view
with	a	button	for	adding	users	to	our	database:	import	SwiftUIimport	SwiftDatastruct	ContentView:	View	{@Environment(\.modelContext)	private	var	modelContext	var	body:	some	View	{	VStack	{	Button	{	modelContext.insert(RandomGenerator.user())	}	label:	{	Text("Add	user")	}	}	.padding()	}}#Preview	{	ContentView()}class	RandomGenerator	{
static	func	user()	->	User	{	let	usernames	=	["Quantum",	"Giraffe",	"Mystic",	"Penguin",	"Nebula",	"Phoenix",	"Zenith",	"Whisper",	"Radiant",	"Tiger",	"Lunar",	"Cascade",	"Celestial",	"Breeze",	"Ephemeral",	"Dragon",	"Cosmic",	"Echo",	"Enigma",	"Sparrow"]	let	index1	=	Int.random(in:	0...usernames.count	-	1)	let	index2	=	Int.random(in:
0...usernames.count	-	1)	return	User(username:	"\(usernames[index1])\(usernames[index2])")	}}	The	most	important	elements	here	are	the	connection	to	our	SwiftData	Context,	and	the	insertion	of	the	object	into	this	context.	@Environment(\.modelContext)	private	var	modelContext...modelContext.insert(RandomGenerator.user())	We	can	check	the
button	is	working	as	it	should	by	querying	the	data,	which	well	cover	next.	Another	of	the	great	things	about	SwiftData	is	that	we	can	see	all	users	in	our	database	simply	by	adding	a	List	to	our	SwiftUI	app	view.	To	do	this,	we	simply	modify	our	ContentView	as	follows:	import	SwiftUIimport	SwiftDatastruct	ContentView:	View	{
@Environment(\.modelContext)	private	var	modelContext	@Query	var	users:	[User]	var	body:	some	View	{	VStack	{	Button	{	modelContext.insert(RandomGenerator.user())	}	label:	{	Text("Add	user")	}	List(users)	{	user	in	Text(user.username)	}	}	.padding()	}}	By	adding	just	four	simple	lines	of	code,	were	now	able	to	query	all	users	from	our	data
model	and	get	a	full	breakdown	of	them.	So	weve	seen	how	to	write	and	read	data	from	our	database.	Now,	lets	take	the	next	natural	step	and	look	at	how	to	delete.	Well	need	to	make	a	small	change	to	how	we	display	our	List	to	make	it	easier	to	add	the	onDelete	modifier.	Again,	however,	this	is	simple.	We	just	need	to	change:	List(users)	{	user	in
Text(user.username)}	to:	List	{	ForEach(users,	id:	\.self)	{	user	in	Text(user.username)	}}	This	will	not	change	the	overall	functionality	of	our	UI	or	app,	but	we	can	check	everything	still	works	by	simply	running	the	app.	Next	well	add	the	onDelete	modifier,	after	which	our	full	List	should	look	like	the	below:	List	{ForEach(users,	id:	\.self)	{	user	in
Text(user.username)	}	.onDelete(perform:	{	offsets	in	modelContext.delete(users[offsets.first	??	0])	})}	Now	we	can	view,	add	and	delete	users	in	our	app:	Having	mastered	the	creation	of	basic	SwiftData	operations	using	a	User	struct	,	we	can	now	consider	more	complex	examples	such	as	bulk	add/delete,	search,	and	sort	operations,	using	all	our
structures.	If	we	want	to	make	data	available	to	demonstrate,	well	first	need	to	change	our	RandomGenerator	class,	so	we	can	generate	more	complete	and	complex	sets	of	data.	The	new	RandomGenerator	class	well	be	using	for	these	examples	is	as	follows:	class	RandomGenerator	{	static	func	user(thatFollows	follows:	[User]	=	[])	->	User	{	let
usernames	=	["Quantum",	"Giraffe",	"Mystic",	"Penguin",	"Nebula",	"Phoenix",	"Zenith",	"Whisper",	"Radiant",	"Tiger",	"Lunar",	"Cascade",	"Celestial",	"Breeze",	"Ephemeral",	"Dragon",	"Cosmic",	"Echo",	"Enigma",	"Sparrow"]	let	index1	=	Int.random(in:	0...usernames.count	-	1)	let	index2	=	Int.random(in:	0...usernames.count	-	1)	return
User(username:	"\(usernames[index1])\(usernames[index2])",	follows:	follows)	}	static	func	posts()	->	[Post]	{	var	oneHundredUsers:	[User]	=	[]	for	_	in	1...100	{	let	otherUsers	=	Int.random(in:	0...100)	var	follows:	[User]	=	[]	for	_	in	0...otherUsers	{	follows.append(RandomGenerator.user())	}	oneHundredUsers.append(RandomGenerator.user(
thatFollows:	follows))	}	let	blogpostTitleArray	=	["Resilience",	"Serendipity",	"Thrive",	"Wanderlust",	"Illuminate",	"Empower",	"Unleash",	"Harmonize",	"Catalyst",	"Flourish",	"Zenith",	"Enchant",	"Pinnacle",	"Catalyst",	"Odyssey",	"Quench",	"Jubilant",	"Synergy",	"Revitalize",	"Traverse"]	var	fiveHundredPosts:	[Post]	=	[]	for	_	in	1...500	{	let	index1	=
Int.random(in:	0...blogpostTitleArray.count	-	1)	let	index2	=	Int.random(in:	0...blogpostTitleArray.count	-	1)	fiveHundredPosts.append(Post(author:	oneHundredUsers[Int.random(in:	0...oneHundredUsers.count	-	1)],	likes:	RandomGenerator	.randomLikes(from:	oneHundredUsers),	title:	"\(blogpostTitleArray[index1])	\(blogpostTitleArray[index2])"))	}
return	fiveHundredPosts	}	static	func	randomLikes(from	users:	[User])	->	[Like]	{	let	amountOfLikes	=	Int.random(in:	0...users.count	-	1)	var	likes:	[Like]	=	[]	for	likeIndex	in	0...amountOfLikes	{	likes.append(Like(user:	users[likeIndex]))	}	return	likes	}}	Now,	rather	than	generating	single	users,	we	can	generate	multiple	users,	each	with	a	list	of
other	users	they	follow.	In	addition	we	can	create	as	many	as	500	posts	at	a	time,	each	with	authors,	titles	and	a	(random)	number	of	likes.	So,	weve	used	our	RandomGenerator	to	generate	500	posts	and	we	now	want	to	add	them	to	our	database.	We	could	just	add	them	to	our	database	individually,	as	we	saw	earlier:	let	posts	=
RandomGenerator.posts()for	post	in	posts	{	modelContext.insert(post)}	Or	we	can	make	this	process	more	efficient	by	creating	a	transaction	object,	and	simply	saving	the	items	to	the	database	after	the	entire	transaction	is	set.	We	do	this	as	follows:	let	posts	=	RandomGenerator.posts()	do	{	try	modelContext.transaction	{	for	post	in	posts	{
modelContext.insert(post)	}	do	{	try	modelContext.save()	}	catch	{	//	Handle	your	error	here	}	}	}	catch	{	//	Handle	your	error	here	}	While	the	first	method	took	12	seconds	to	complete,	the	second	only	took	nine	seconds.	That	may	seem	like	a	marginal	gain,	but	every	little	advantage	helps	when	were	sprinting	towards	a	target.	Deleting	follows	the
exact	same	process.	We	just	need	to	replace:	modelContext.insert(...	with:	modelContext.delete(...	Our	base	View,	which	shows	us	the	Post,	author	and	number	of	likes,	will	look	like	the	one	below:	struct	ContentView:	View	{	@Environment(\.modelContext)	private	var	modelContext	@Query	var	posts:	[Post]	var	body:	some	View	{	VStack	{	Button	{
let	posts	=	RandomGenerator.posts()	do	{	try	modelContext.transaction	{	for	post	in	posts	{	modelContext.insert(post)	}	do	{	try	modelContext.save()	}	catch	{	//	Handle	error	}	}	}	catch	{	//	Handle	error	}	}	label:	{	Text("Add	posts")	}	List(posts)	{	post	in	VStack	{	Text(post.title).font(.system(size:	24))	HStack	{	Text(post.author.username)	Spacer()
Text(post.likes.count.description	+	"	likes")	}	}	}	}	.padding()	}}	Now	lets	look	at	some	examples	of	queries	to	sort	the	data,	which	will	be	crucial	as	our	app	evolves	and	we	need	to	extract	specific	information.	To	sort	by	author/user,	we	can	use	a	SortDescriptor	and	well	need	to	change	our	Query	as	follows:	@Query	(sort:
[SortDescriptor(\Post.author.username)])	var	posts:	[Post]	Now	the	Posts	will	be	grouped	by	author/user	when	they	are	displayed.	Lets	say	we	only	wanted	to	see	posts	created	by	the	user	called	CascadeMystic.	In	this	case,	we	would	use	a	Predicate,	as	below:	@Query	(filter:	#Predicate	{	post	in	post.author.username	==	"CascadeMystic"	})var
posts:	[Post]	Just	FYI,	we	use	SortDescriptors	to	sort	by	a	specific	keypath,	and	Predicates	for	filtering	the	objects	we	want	to	fetch.	To	use	SwiftData	in	your	app,	you	need	to	remember	the	following	two	crucial	steps:	Make	the	Structs/Classes	you	want	to	store	conform	to	@Model.	Make	your	app	a	Container	of	your	@Models	with	.modelContainer
(for:	[MyModel.self]).	Once	thats	done,	you	can	use	SwiftData	in	any	View	by	adding	a	model	context	to	it:@Environment(\.modelContext)	private	var	modelContext	So	now,	you	can	read	your	saved	types	with	a	query:	@Query	var	myTypeArray:	[MyModel]	Add	new	elements	with	an	insert:	modelContext.insert(myElement)	And	delete	them:
modelContext.delete(myElement)	The	more	you	practice	and	play	around	with	this,	the	more	youll	see	the	benefits	of	SwiftData	when	adding	and	using	local	database	capabilities	in	your	apps.	You	can	really	get	creative	here,	so	let	your	imagination	roam!	

What	is	core	data.	Core	data	meaning.	Core	data	concepts.	Describe	core	data	concepts.

