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How	to	find	the	limits	of	absolute	value	functions;	several	examples	and	detailed	solutions	are	presented	along	with	graphical	interpretations.	A	set	of	exercises	with	answers	is	presented	at	the	bottom	of	the	page.	Find	the	limits	of	the	following	functions.	Question	Find	the	limit:	Solution	The	steps	to	find	the	limit	are:	Question	Evaluate	the	limit:
Solution	The	steps	to	find	the	limit	are	\(	\)\(	\)\(	\)	Question	Find	the	limit:	\(	\lim_{x	\to	0}	\frac{x}{|x|}	\)	Solution	\(	\lim_{x	\to	0}	\frac{x}{|x|}	=	\frac{0}{|0|}	\;	\;	\text{indeterminate	form}	\)	Recall	that	\(	|	x	|	=	x	\)	for	\(	x	\le	0	\)	and	\(	|	x	|	=	-	x	\)	for	\(	x	\lt	0	\)	Let	us	calculate	the	limit	from	the	left	of	\(	x	=	0	\)	where	\(	x	\lt	0	\)	and	therefore	\(	|	x
|	=	-	x	\)	\(	\lim_{x	\to	0^-}	\frac{x}{|x|}	=	\lim_{x	\to	0^-}	\frac{x}{-	x}	=	\lim_{x	\to	0^-}	-	1	=	-1	\)	Let	us	calculate	the	limit	from	the	right	of	\(	x	=	0	\)	where	\(	x	\gt	0	\)	and	therefore	\(	|	x	|	=	x	\)	\(	\lim_{x	\to	0^+}	\frac{x}{|x|}	=	\lim_{x	\to	0^+}	\frac{x}{x}	=	\lim_{x	\to	0^+}	1	=1	\)	The	limits	from	the	left	and	from	the	right	of	x	=	0	are	not
equal,	therefore	\(	\lim_{x	\to	0}	\frac{x}{|x|}	\;	\;	\text{does	not	exist}	\)	The	graph	of	f(x)	=	x	/	|x|	is	shown	below	and	we	clearly	see	that	the	limits	from	the	left	and	right	of	0	are	not	equal.	Figure	1.	Graph	of	f(x)	=	x	/	|x|.	Question	Evaluate	the	limit:	\(	\lim_{x	\to	\infty}	\frac{x}{|x|}	\)	Solution	as	x	increases	indefinitely	,	x	>	0	and	therefore	|x|	=	x
Hence	\(	\lim_{x	\to	\infty}	\frac{x}{|x|}	=	\lim_{x	\to	\infty}	\frac{x}{x}	=	\lim_{x	\to	\infty}	1	=	1	\)	Question	Find	the	limit:	\(	\lim_{x	\to	-\infty}	\frac{x}{|x|}	\)	Solution	as	x	decreases	indefinitely	,	x	<	0	and	therefore	|x|	=	-	x	Hence	\(	\lim_{x	\to	-\infty}	\frac{x}{|x|}	=	\lim_{x	\to	-\infty}	\frac{x}{	-	x}	=	\lim_{x	\to	\infty}	-	1	=	-	1	\)	Question	Does
the	limit	\(	\lim_{x	\to	-	2}	\frac{|x	+	2|}{x	+	2}	\)	exists?	Solution	\(	\lim_{x	\to	-	2}	\frac{|x	+	2|}{x	+	2}	=	\lim_{x	\to	-	2}	\frac{|-	2	+	2|}{-	2	+	2}	=	\dfrac{0}{0}	\;\;	\text{indeterminate}	\)	Let	us	calculate	the	limit	from	the	left	of	-2	where	x	≤	-	2	and	from	the	right	of	-2	where	x	≥	-	2	separateley.	Recall	that	If	x	+	2	≥	0	or	x	≥	-	2	then	|	x	+	2	|	=	x
+	2	and	If	x	+	2	≤	0	or	x	≤	-	2	then	|	x	+	2	|	=	-	\(	(	x	+	2	)	\)	Let	us	calculate	the	limit	from	the	left	of	x	=	-	2.	\(	\lim_{x	\to	-	2^-}	\frac{|x	+	2|}{x	+	2}	=	\lim_{x	\to	-2^-}	\frac{-(x	+	2)}{x	+	2}	=	\lim_{x	\to	-2^-}	-	1	=	-1	\)	Let	us	calculate	the	limit	from	the	right	of	x	=	-	2	\(	\lim_{x	\to	-	2^+}	\frac{|x	+	2|}{x	+	2}	=	\lim_{x	\to	-	2^+}	\frac{x	+	2}{x
+	2}	=	\lim_{x	\to	-2^+}	1	=	1	\)	The	limits	from	the	left	and	from	the	right	of	x	=	-	2	are	not	equal,	therefore	\(	\lim_{x	\to	-	2}	\frac{|x	+	2|}{x	+	2}	\;	\;	\text{does	not	exist}	\)	Find	the	limit:	\(	\lim_{x	\to	1}	\frac{x^2+2x-3}{|x	-	1|}	\)	Solution	\(	\lim_{x	\to	1}	\frac{x^2+2x-3}{|x	-	1|}	=	\frac{(1)^2+2(1)-3}{|(1)	-	1|}	=	\dfrac{0}{0}	\;	\;
\text{indeterminate}	\)	At	x	=	1	both	numerator	and	denominator	are	equal	to	zero,	they	therefore	have	a	common	factor	x	-	1.	We	factor	the	numerator.	\(	\lim_{x	\to	1}	\frac{x^2+2x-3}{|x	-	1|}	=	\lim_{x	\to	1}	\frac{(x-1)(x+3)}{|x	-	1|}	\)	Recall	that	|	x	-	1	|	=	x	-	1	for	x	-	1	≥	0	or	x	≥	1	and	|	x	-	1	|	=	-	\(	(	x	-	1	)	\)	for	x	-	1	<	0	or	x	<	1	Let	us	calculate
the	limit	from	the	left	of	x	=	1	\(	\lim_{x	\to	1^-}	\frac{x^2+2x-3}{|x	-	1|}	=	\lim_{x	\to	1^-}	\frac{(x-1)(x+3)}{-(x-1)}	=	\lim_{x	\to	1^-}	-	(x	+	3)	=	-	4	\)	Let	us	calculate	the	limit	from	the	right	of	x	=	1	\(	\lim_{x	\to	1^+}	\frac{x^2+2x-3}{|x	-	1|}	=	\lim_{x	\to	1^+}	\frac{(x-1)(x+3)}{x-1}	=	\lim_{x	\to	1^-}	(x	+	3)	=	4	\)	The	limits	from	the	left	and
from	the	right	are	not	equal,	therefore	\(	\lim_{x	\to	1}	\frac{x^2+2x-3}{|x	-	1|}	\;	\;	\text{does	not	exist}	\)	The	graph	of	f(x)	=	(x^2	+	2	x	-	3)/|x	-	1|	is	shown	below	and	we	clearly	see	that	the	limits	from	the	left	and	right	of	1	are	not	equal.	Figure	2.	Graph	of	f(x)	=	(x2	+	2	x	-	3)/|x	-	1|.	Question	Evaluate	the	limit:	\(	\lim_{x	\to	\infty}
\frac{x^2+5x+7}{|x	+	2|}	\)	Solution	As	x	increases	indefinitely,	x	+	2	also	increases	indefinitely	and	therefore	x	+	2	>	0,	hence	\(	\lim_{x	\to	\infty}	\frac{x^2+5x+7}{|x	+	2|}	=	\lim_{x	\to	\infty}	\frac{x^2+5x+7}{x	+	2}	=	+	\infty	\)	Question	Find	the	limit:	\(	\lim_{x	\to	-	\infty}	\frac{x^2+5x+7}{|x	+	2|}	\)	Solution	As	x	decreases	indefinitely,	x	+
2	also	decreases	indefinitely	and	therefore	x	+	2	<	0,	hence	\(	\lim_{x	\to	-\infty}	\frac{x^2+5x+7}{|x	+	2|}	=	\lim_{x	\to	-\infty}	\frac{x^2+5x+7}{-(x	+	2)}	=	+	\infty	\)	The	graph	of	\(	f(x)	=	(x^2	+	5	x	+	7)/|x	+	2|	\)	is	shown	below	and	we	clearly	see	that	\(	y	=	f(x)	\)	increases	indefinitely	as	x	increases	indefinitely	and	also	as	x	decreases
indefinitely.	Figure	3.	Graph	of	\(	f(x)	=	\dfrac	{x^2	+	5	x	+	7}{|x	+	2|}	\).	Exercises	Find	the	limits	1)	\(	\lim_{x	\to	0}	\frac{x^2}{|x|}	\)	2)	\(	\lim_{x	\to	-	6^-}	\frac{-(x	+	6)}{|x	+	6|}	\)	3)	\(	\lim_{x	\to	-	6^+}	\frac{-(x	+	6)}{|x	+	6|}	\)	4)	\(	\lim_{x	\to	3}	\frac{x^2-x-6}{|x	-	3|}	\)	Answers	to	Above	Exercises	1)	0	2)	1	3)	-	1	4)	does	not	exist	More
References	and	links	Calculus	Tutorials	and	Problems	-	Limits	Find	Limits	of	Functions	in	Calculus	Introduction	to	Limits	in	Calculus	Properties	of	Limits	of	Mathematical	Functions	in	Calculus	limits	of	basic	functions	Questions	and	Answers	on	Limits	in	Calculus	The	absolute	value	of	a	number	is	the	distance	of	the	number	from	zero,	meaning	that
the	absolute	values	of	6	and	-6	are	6.An	absolute	value	function	is	defined	as:	Limit	of	an	Absolute	Value	Function	as	x	Approaches	a	Real	Number	cBecause	the	argument	of	an	absolute	value	function	may	be	positive	or	negative,	we	have	to	satisfy	both	cases:	when	x	>	0	and	x	<	0.Suppose	we	want	to	find	the	limit	of	|2x	+	3|	as	x	approaches	2	as
follows:	To	calculate	the	limit,	we	have	to	separate	the	absolute	value	into	two	cases:Case	1:	2x	+	3		if	2x	+	3	>	0Case	2:	-(2x	+	3)	if		2x	+	3	<	0​	Because	we	are	looking	for	the	limit	as	x	approaches	2,	it	falls	into	the	first	case	since	2	>	-3/2.	Therefore	to	find	the	limit,	we	have	to	plug	2	using	|2x	+	3|.	The	limit	is	|2*2	+	3|	=	7.	More	ExamplesFind	the
limit	of	each	absolute	value	function	if	it	exists.	Calculator	solution​Type	in:	lim	[	x	=	4	]	abs(	2x	+	3	)	-	3Case	1:	2x	+	3		if	2x	+	3	>	0	or	x	>	-3/2Case	2:	-(2x	+	3)	if		2x	+	3	<	0	or	x	<	-3/2Since	4	>	-	3/2,	we	evaluate	the	expression	2x	+	3	at	x	=	4.																																																																																|2(4)	+	3|	-	3	=	11	-	3	=	8.	Calculator	solution​Type	in:	​lim
[	x	=	-3	]	(	(	abs(	x	+	1	)	+	3	/	x	)Case	1:	x	+	1	if	x	>	-	1Case	2:	-(x	+	1)	if	x	<	-1Since	-3	<	-	1,	we	evaluate	-(x	+	1)	at	x	=	-3.																																																	-(-3	+	1)	+	3/(-3)	=	-(-2)	-	1	=	2	-	1	=	1.	Calculator	solution​Type	in:	​lim	[	x	=	3	]	(	2	(	abs(	x^2	-	4	)	-	abs(	x	)	-	4	)	)	Calculator	solution​Type	in:	​lim	[	x	=	2	-	]	(	(	x^2	+	x	-	6	)	/	abs(	x	-	2	)	)	next:	15.8.
limit	of	a	trigonometric	function	>	In	order	to	continue	enjoying	our	site,	we	ask	that	you	confirm	your	identity	as	a	human.	Thank	you	very	much	for	your	cooperation.	Limits	involving	absolute	values	often	involve	breaking	things	into	cases.	Remember	that	$$|f(x)|=\begin{cases}	f(x),	&\text{	if	}	f(x)\ge0;\\	-f(x),	&\text{	if	}	f(x)\le0.\\	\end{cases}$$
By	studying	these	cases	separately,	we	can	often	get	a	good	picture	of	what	a	function	is	doing	just	to	the	left	of	$x=a$,	and	just	to	the	right	of	$x=a$.	By	combining	these,	we	can	understand	the	limit	as	$x	\to	a$.	Show	Mobile	Notice	Show	All	Notes	Hide	All	Notes	Mobile	Notice	You	appear	to	be	on	a	device	with	a	"narrow"	screen	width	(i.e.	you	are
probably	on	a	mobile	phone).	Due	to	the	nature	of	the	mathematics	on	this	site	it	is	best	viewed	in	landscape	mode.	If	your	device	is	not	in	landscape	mode	many	of	the	equations	will	run	off	the	side	of	your	device	(you	should	be	able	to	scroll/swipe	to	see	them)	and	some	of	the	menu	items	will	be	cut	off	due	to	the	narrow	screen	width.	The	time	has
almost	come	for	us	to	actually	compute	some	limits.	However,	before	we	do	that	we	will	need	some	properties	of	limits	that	will	make	our	life	somewhat	easier.	So,	let’s	take	a	look	at	those	first.	The	proof	of	some	of	these	properties	can	be	found	in	the	Proof	of	Various	Limit	Properties	section	of	the	Extras	chapter.	Properties	First,	we	will	assume
that	\(\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)\)	and	\(\mathop	{\lim	}\limits_{x	\to	a}	g\left(	x	\right)\)	exist	and	that	\(c\)	is	any	constant.	Then,	\(\mathop	{\lim	}\limits_{x	\to	a}	\left[	{cf\left(	x	\right)}	\right]	=	c\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)\)	In	other	words,	we	can	“factor”	a	multiplicative	constant	out	of	a	limit.	\(\mathop
{\lim	}\limits_{x	\to	a}	\left[	{f\left(	x	\right)	\pm	g\left(	x	\right)}	\right]	=	\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)	\pm	\mathop	{\lim	}\limits_{x	\to	a}	g\left(	x	\right)\)	So,	to	take	the	limit	of	a	sum	or	difference	all	we	need	to	do	is	take	the	limit	of	the	individual	parts	and	then	put	them	back	together	with	the	appropriate	sign.	This	is	also	not
limited	to	two	functions.	This	fact	will	work	no	matter	how	many	functions	we’ve	got	separated	by	“+”	or	“-”.	\(\mathop	{\lim	}\limits_{x	\to	a}	\left[	{f\left(	x	\right)g\left(	x	\right)}	\right]	=	\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)\,\,\,\mathop	{\lim	}\limits_{x	\to	a}	g\left(	x	\right)\)	We	take	the	limits	of	products	in	the	same	way	that	we	can
take	the	limit	of	sums	or	differences.	Just	take	the	limit	of	the	pieces	and	then	put	them	back	together.	Also,	as	with	sums	or	differences,	this	fact	is	not	limited	to	just	two	functions.	\(\displaystyle	\mathop	{\lim	}\limits_{x	\to	a}	\left[	{\frac{{f\left(	x	\right)}}{{g\left(	x	\right)}}}	\right]	=	\frac{{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)}}
{{\mathop	{\lim	}\limits_{x	\to	a}	g\left(	x	\right)}}{\rm{,}}\,\,\,\,\,{\rm{provided	}}\,\mathop	{\lim	}\limits_{x	\to	a}	g\left(	x	\right)	e	0\)	As	noted	in	the	statement	we	only	need	to	worry	about	the	limit	in	the	denominator	being	zero	when	we	do	the	limit	of	a	quotient.	If	it	were	zero	we	would	end	up	with	a	division	by	zero	error	and	we	need	to	avoid
that.	\(\mathop	{\lim	}\limits_{x	\to	a}	{\left[	{f\left(	x	\right)}	\right]^n}	=	{\left[	{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)}	\right]^n},\,\,\,\,{\mbox{where	}}n{\mbox{	is	any	real	number}}\)	In	this	property	\(n\)	can	be	any	real	number	(positive,	negative,	integer,	fraction,	irrational,	zero,	etc.).	In	the	case	that	\(n\)	is	an	integer	this	rule	can
be	thought	of	as	an	extended	case	of	3.	For	example,	consider	the	case	of	\(n	=	\)2.	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	a}	{\left[	{f\left(	x	\right)}	\right]^2}	&	=	\mathop	{\lim	}\limits_{x	\to	a}	\left[	{f\left(	x	\right)f\left(	x	\right)}	\right]\\	&	=	\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x
\right)\hspace{0.5in}{\mbox{using	property	3}}\\	&	=	{\left[	{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)}	\right]^2}\end{align*}\]	The	same	can	be	done	for	any	integer	\(n\).	\(\mathop	{\lim	}\limits_{x	\to	a}	\left[	{\sqrt[n]{{f\left(	x	\right)}}}	\right]	=	\sqrt[n]{{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)}}\)	This	is	just	a	special	case	of	the
previous	example.	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	a}	\left[	{\sqrt[n]{{f\left(	x	\right)}}}	\right]	&	=	\mathop	{\lim	}\limits_{x	\to	a}	{\left[	{f\left(	x	\right)}	\right]^{\frac{1}{n}}}\\	&	=	{\left[	{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x	\right)}	\right]^{\frac{1}{n}}}\\	&	=	\sqrt[n]{{\mathop	{\lim	}\limits_{x	\to	a}	f\left(	x
\right)}}\end{align*}\]	\(\mathop	{\lim	}\limits_{x	\to	a}	c	=	c,\,\,\,\,c{\mbox{	is	any	real	number}}\)	In	other	words,	the	limit	of	a	constant	is	just	the	constant.	You	should	be	able	to	convince	yourself	of	this	by	drawing	the	graph	of	\(f\left(	x	\right)	=	c\).	\(\mathop	{\lim	}\limits_{x	\to	a}	x	=	a\)	As	with	the	last	one	you	should	be	able	to	convince
yourself	of	this	by	drawing	the	graph	of	\(f\left(	x	\right)	=	x\).	\(\mathop	{\lim	}\limits_{x	\to	a}	{x^n}	=	{a^n}\)	This	is	really	just	a	special	case	of	property	5	using	\(f\left(	x	\right)	=	x\).	Note	that	all	these	properties	also	hold	for	the	two	one-sided	limits	as	well	we	just	didn’t	write	them	down	with	one	sided	limits	to	save	on	space.	Let’s	compute	a
limit	or	two	using	these	properties.	The	next	couple	of	examples	will	lead	us	to	some	truly	useful	facts	about	limits	that	we	will	use	on	a	continual	basis.	Example	1	Compute	the	value	of	the	following	limit.	\[\mathop	{\lim	}\limits_{x	\to	-	2}	\left(	{3{x^2}	+	5x	-	9}	\right)\]	Show	Solution	This	first	time	through	we	will	use	only	the	properties	above	to
compute	the	limit.	First,	we	will	use	property	2	to	break	up	the	limit	into	three	separate	limits.	We	will	then	use	property	1	to	bring	the	constants	out	of	the	first	two	limits.	Doing	this	gives	us,	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	-	2}	\left(	{3{x^2}	+	5x	-	9}	\right)	&	=	\mathop	{\lim	}\limits_{x	\to	-	2}	3{x^2}	+	\mathop	{\lim	}\limits_{x	\to	-
2}	5x	-	\mathop	{\lim	}\limits_{x	\to	-	2}	9\\	&	=	3\mathop	{\lim	}\limits_{x	\to	-	2}	{x^2}	+	\mathop	{5\lim	}\limits_{x	\to	-	2}	x	-	\mathop	{\lim	}\limits_{x	\to	-	2}	9\end{align*}\]	We	can	now	use	properties	7	through	9	to	actually	compute	the	limit.	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	-	2}	\left(	{3{x^2}	+	5x	-	9}	\right)	&	=	3\mathop	{\lim
}\limits_{x	\to	-	2}	{x^2}	+	\mathop	{5\lim	}\limits_{x	\to	-	2}	x	-	\mathop	{\lim	}\limits_{x	\to	-	2}	9\\	&	=	3{\left(	{	-	2}	\right)^2}	+	5\left(	{	-	2}	\right)	-	9\\	&	=	-	7\end{align*}\]	Now,	let’s	notice	that	if	we	had	defined	\[p\left(	x	\right)	=	3{x^2}	+	5x	-	9\]	then	the	proceeding	example	would	have	been,	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	-
2}	p\left(	x	\right)	&	=	\mathop	{\lim	}\limits_{x	\to	-	2}	\left(	{3{x^2}	+	5x	-	9}	\right)\\	&	=	3{\left(	{	-	2}	\right)^2}	+	5\left(	{	-	2}	\right)	-	9\\	&	=	-	7\\	&	=	p\left(	{	-	2}	\right)\end{align*}\]	In	other	words,	in	this	case	we	see	that	the	limit	is	the	same	value	that	we’d	get	by	just	evaluating	the	function	at	the	point	in	question.	This	seems	to	violate
one	of	the	main	concepts	about	limits	that	we’ve	seen	to	this	point.	In	the	previous	two	sections	we	made	a	big	deal	about	the	fact	that	limits	do	not	care	about	what	is	happening	at	the	point	in	question.	They	only	care	about	what	is	happening	around	the	point.	So	how	does	the	previous	example	fit	into	this	since	it	appears	to	violate	this	main	idea
about	limits?	Despite	appearances	the	limit	still	doesn’t	care	about	what	the	function	is	doing	at	\(x	=	-	2\).	In	this	case	the	function	that	we’ve	got	is	simply	“nice	enough”	so	that	what	is	happening	around	the	point	is	exactly	the	same	as	what	is	happening	at	the	point.	Eventually	we	will	formalize	up	just	what	is	meant	by	“nice	enough”.	At	this	point
let’s	not	worry	too	much	about	what	“nice	enough”	is.	Let’s	just	take	advantage	of	the	fact	that	some	functions	will	be	“nice	enough”,	whatever	that	means.	The	function	in	the	last	example	was	a	polynomial.	It	turns	out	that	all	polynomials	are	“nice	enough”	so	that	what	is	happening	around	the	point	is	exactly	the	same	as	what	is	happening	at	the
point.	This	leads	to	the	following	fact.	Fact	If	\(p(x)\)	is	a	polynomial	then,	\[\mathop	{\lim	}\limits_{x	\to	a}	p\left(	x	\right)	=	p\left(	a	\right)\]	By	the	end	of	this	section	we	will	generalize	this	out	considerably	to	most	of	the	functions	that	we’ll	be	seeing	throughout	this	course.	Let’s	take	a	look	at	another	example.	Example	2	Evaluate	the	following
limit.	\[\mathop	{\lim	}\limits_{z	\to	1}	\frac{{6	-	3z	+	10{z^2}}}{{	-	2{z^4}	+	7{z^3}	+	1}}\]	Show	Solution	First	notice	that	we	can	use	property	4	to	write	the	limit	as,	\[\mathop	{\lim	}\limits_{z	\to	1}	\frac{{6	-	3z	+	10{z^2}}}{{	-	2{z^4}	+	7{z^3}	+	1}}	=	\frac{{\mathop	{\lim	}\limits_{z	\to	1}	6	-	3z	+	10{z^2}}}{{\mathop	{\lim	}\limits_{z
\to	1}	-	2{z^4}	+	7{z^3}	+	1}}\]	Well,	actually	we	should	be	a	little	careful.	We	can	do	that	provided	the	limit	of	the	denominator	isn’t	zero.	As	we	will	see	however,	it	isn’t	in	this	case	so	we’re	okay.	Now,	both	the	numerator	and	denominator	are	polynomials	so	we	can	use	the	fact	above	to	compute	the	limits	of	the	numerator	and	the	denominator
and	hence	the	limit	itself.	\[\begin{align*}\mathop	{\lim	}\limits_{z	\to	1}	\frac{{6	-	3z	+	10{z^2}}}{{	-	2{z^4}	+	7{z^3}	+	1}}	&	=	\frac{{6	-	3\left(	1	\right)	+	10{{\left(	1	\right)}^2}}}{{	-	2{{\left(	1	\right)}^4}	+	7{{\left(	1	\right)}^3}	+	1}}\\	&	=	\frac{{13}}{6}\end{align*}\]	Notice	that	the	limit	of	the	denominator	wasn’t	zero	and	so	our
use	of	property	4	was	legitimate.	In	the	previous	example,	as	with	polynomials,	all	we	really	did	was	evaluate	the	function	at	the	point	in	question.	So,	it	appears	that	there	is	a	fairly	large	class	of	functions	for	which	this	can	be	done.	Let’s	generalize	the	fact	from	above	a	little.	Fact	Provided	\(f(x)\)	is	“nice	enough”	we	have,	\[\mathop	{\lim	}\limits_{x
\to	a}	f\left(	x	\right)	=	f\left(	a	\right)\hspace{0.5in}\mathop	{\lim	}\limits_{x	\to	{a^	-	}}	f\left(	x	\right)	=	f\left(	a	\right)\hspace{0.5in}\mathop	{\lim	}\limits_{x	\to	{a^	+	}}	f\left(	x	\right)	=	f\left(	a	\right)\]	Again,	we	will	formalize	up	just	what	we	mean	by	“nice	enough”	eventually.	At	this	point	all	we	want	to	do	is	worry	about	which	functions	are
“nice	enough”.	Some	functions	are	“nice	enough”	for	all	\(x\)	while	others	will	only	be	“nice	enough”	for	certain	values	of	\(x\).	It	will	all	depend	on	the	function.	As	noted	in	the	statement,	this	fact	also	holds	for	the	two	one-sided	limits	as	well	as	the	normal	limit.	Here	is	a	list	of	some	of	the	more	common	functions	that	are	“nice	enough”.	Polynomials
are	nice	enough	for	all	\(x\)’s.	If	\(\displaystyle	f\left(	x	\right)	=	\frac{{p\left(	x	\right)}}{{q\left(	x	\right)}}\)	then	\(f(x)\)	will	be	nice	enough	provided	both	\(p(x)\)	and	\(q(x)\)	are	nice	enough	and	if	we	don’t	get	division	by	zero	at	the	point	we’re	evaluating	at.	\(\cos	\left(	x	\right),\,\,\sin	\left(	x	\right)\)	are	nice	enough	for	all	\(x\)’s	\(\sec	\left(	x
\right),\,\,\tan	\left(	x	\right)\)	are	nice	enough	provided	\(x	e	\ldots	,	-	\frac{{5\pi	}}{2},	-	\frac{{3\pi	}}{2},\frac{\pi	}{2},\frac{{3\pi	}}{2},\frac{{5\pi	}}{2},	\ldots	\)	In	other	words	secant	and	tangent	are	nice	enough	everywhere	cosine	isn’t	zero.	To	see	why	recall	that	these	are	both	really	rational	functions	and	that	cosine	is	in	the	denominator	of
both	then	go	back	up	and	look	at	the	second	bullet	above.	\(\csc	\left(	x	\right),\,\,\cot	\left(	x	\right)\)	are	nice	enough	provided	\(x	e	\ldots	,	-	2\pi	,\,\,	-	\pi	,\,\,0,\,\,\pi	,\,\,2\pi	,	\ldots	\)	In	other	words	cosecant	and	cotangent	are	nice	enough	everywhere	sine	isn’t	zero.	\(\sqrt[n]{x}\)	is	nice	enough	for	all	\(x\)	if	\(n\)	is	odd.	\(\sqrt[n]{x}\)	is	nice	enough	for
\(x	\ge	0\)	if	\(n\)	is	even.	Here	we	require	\(x	\ge	0\)	to	avoid	having	to	deal	with	complex	values.	\({a^x},\,\,{{\bf{e}}^x}\)	are	nice	enough	for	all	\(x\)’s.	\({\log	_b}x,\,\,\,\ln	x\)	are	nice	enough	for	\(x	>	0\).	Remember	we	can	only	plug	positive	numbers	into	logarithms	and	not	zero	or	negative	numbers.	Any	sum,	difference	or	product	of	the	above
functions	will	also	be	nice	enough.	Quotients	will	be	nice	enough	provided	we	don’t	get	division	by	zero	upon	evaluating	the	limit.	The	last	bullet	is	important.	This	means	that	for	any	combination	of	these	functions	all	we	need	to	do	is	evaluate	the	function	at	the	point	in	question,	making	sure	that	none	of	the	restrictions	are	violated.	This	means	that
we	can	now	do	a	large	number	of	limits.	Example	3	Evaluate	the	following	limit.	\[\mathop	{\lim	}\limits_{x	\to	3}	\left(	{	-	\sqrt[5]{x}	+	\frac{{{{\bf{e}}^x}}}{{1	+	\ln	\left(	x	\right)}}	+	\sin	\left(	x	\right)\cos	\left(	x	\right)}	\right)\]	Show	Solution	This	is	a	combination	of	several	of	the	functions	listed	above	and	none	of	the	restrictions	are	violated
so	all	we	need	to	do	is	plug	in	\(x	=	3\)	into	the	function	to	get	the	limit.	\[\begin{align*}\mathop	{\lim	}\limits_{x	\to	3}	\left(	{	-	\sqrt[5]{x}	+	\frac{{{{\bf{e}}^x}}}{{1	+	\ln	\left(	x	\right)}}	+	\sin	\left(	x	\right)\cos	\left(	x	\right)}	\right)	&	=	-	\sqrt[5]{3}	+	\frac{{{{\bf{e}}^3}}}{{1	+	\ln	\left(	3	\right)}}	+	\sin	\left(	3	\right)\cos	\left(	3	\right)\\	&
=	{\rm{8}}{\rm{.1854272743}}\end{align*}\]	Not	a	very	pretty	answer,	but	we	can	now	do	the	limit.	Embrace	the	elegance	of	mathematics	as	we	delve	into	the	exciting	world	of	absolute	value	limits.	This	article	explores	the	concept	of	absolute	value	limits,	highlighting	the	mathematical	rules,	important	properties,	and	the	powerful	applications
they	hold.Definition	of	Absolute	Value	LimitsIn	mathematics,	the	limit	of	a	function	as	its	argument	or	input	tends	towards	a	certain	value	is	a	fundamental	concept	in	calculus.	When	we	talk	about	the	limit	of	an	absolute	value	function,	we	are	referring	to	this	calculus	concept	but	applied	to	a	function	involving	absolute	values.The	absolute	value
function	is	defined	as	|x|	=	x	if	x	≥	0	and	|x|	=	-x	if	x	<	0.	Consequently,	when	we	consider	the	limit	of	an	absolute	value	function,	it’s	important	to	recognize	that	the	function	behaves	differently	on	either	side	of	the	point	where	the	argument	is	zero.	This	can	lead	to	situations	where	the	right-hand	limit	and	left-hand	limit	are	not	the	same.The	limit	of
an	absolute	value	function	at	a	certain	point	is	the	value	that	the	function	approaches	as	the	input	(or	argument)	approaches	that	point.For	example,	consider	the	function	f(x)	=	|x	–	a|.	As	x	approaches	a	from	the	right	(x	>	a),	f(x)	approaches	0,	and	as	x	approaches	a	from	the	left	(x	<	a),	f(x)	also	approaches	0.	Therefore,	the	limit	of	f(x)	as	x
approaches	a	is	0.However,	consider	the	function	g(x)	=	|x|.	As	x	approaches	0	from	the	right,	g(x)	approaches	0,	but	as	x	approaches	0	from	the	left,	g(x)	also	approaches	0.	Therefore,	the	limit	of	g(x)	as	x	approaches	0	is	0.Figure-1.Properties	of	Absolute	Value	LimitsThe	limit	of	an	absolute	value	function	shares	many	properties	with	limits	in
general.	Here	are	some	key	properties	of	absolute	value	limits:Limit	of	the	Absolute	Value	of	a	FunctionThe	absolute	value	limits	of	a	function	as	x	approaches	a,	can	be	written	as:lim	(x→a)	|f(x)|This	is	equal	to	the	absolute	value	limit	of	the	function	as	x	approaches	a,	if	the	limit	exists.Squeeze	(Sandwich)	TheoremIf	a	function	is	bounded	by	two	other
functions	that	approach	the	same	limit	as	x	approaches	a,	then	the	original	function	also	approaches	that	limit.	This	theorem	is	often	used	when	calculating	the	limits	of	absolute	value	functions.Right-hand	and	Left-hand	LimitsBecause	absolute	value	functions	often	have	different	behavior	on	either	side	of	a	certain	point	(most	often	where	the	function
equals	zero),	it’s	often	necessary	to	calculate	the	right-hand	limit	(x	approaching	a	from	values	greater	than	a)	and	the	left-hand	limit	(x	approaching	a	from	values	less	than	a)	separately.If	these	two	one-sided	limits	are	equal,	then	the	limit	of	the	function	as	x	approaches	a	exists	and	is	equal	to	this	common	value.Limit	of	the	Absolute	Value	of	a
DifferenceIf	we	have	lim	(x→a)	|f(x)	-	g(x)|	=	0,	it	implies	that	lim	(x→a)	f(x)	=	lim	(x→a)	g(x).Absolute	Value	and	InequalitiesIf	0	<	|x	-	a|	<	δ	(where	δ	is	a	positive	number),	this	means	that	x	is	in	the	interval	(a	-	δ,	a	+	δ),	excluding	the	point	x	=	a.	This	property	is	especially	useful	when	proving	limits.Continuous	at	a	PointIf	a	function	f(x)	is	continuous
at	a	point	x	=	a,	then	|f(x)|	is	also	continuous	at	x	=	a.It’s	important	to	note	that,	in	practice,	finding	the	limit	of	absolute	value	functions	often	involves	breaking	the	function	into	piecewise-defined	functions	based	on	where	the	absolute	value’s	argument	is	positive	or	negative.Exercise	Example	1Find	lim	(x→2)	|x	-	2|.Figure-2.SolutionSince	|x	-	2|
equals	0	when	x	=	2,	the	limit	as	x	approaches	2	is	also	0.Example	2Find	lim	(x→3)	|x	-	3|	/	(x	-	3).SolutionThis	limit	has	different	values	from	the	right	and	from	the	left:From	the	right	(x	>	3),	|x	-	3|	=	x	-	3,	so	lim	(x→3+)	|x	-	3|	/	(x	-	3)	=	1.From	the	left	(x	<	3),	|x	-	3|	=	-(x	-	3),	so	lim	(x→3-)	|x	-	3|	/	(x	-	3)	=	-1.Since	the	left-hand	limit	does	not	equal	the
right-hand	limit,	the	limit	lim	(x→3)	|x	-	3|	/	(x	-	3)	does	not	exist.Example	3Find	lim	(x→0)	|x|	/	x.Figure-3.SolutionFrom	the	right	(x	>	0),	|x|	=	x,	so	lim	(x→0+)	|x|	/	x	=	1.From	the	left	(x	<	0),	|x|	=	-x,	so	lim	(x→0-)	|x|	/	x	=	-1.Since	the	left-hand	limit	does	not	equal	the	right-hand	limit,	the	limit	lim	(x→0)	|x|	/	x	does	not	exist.Example	4Find	lim	(x→5)	|x²	-
25|	/	(x	-	5).SolutionWe	can	simplify	|x²	-	25|	to	|x	-	5||x	+	5|.	Therefore,	the	limit	expression	becomes	|x	+	5|.So,	lim	(x→5)	|x²	-	25|	/	(x	-	5)	=	|5	+	5|	=	10.Example	5Find	lim	(x→-3)	|2x	+	6|	/	(2x	+	6).SolutionFrom	the	right	(x	>	-3),	|2x	+	6|	=	2x	+	6,	so	lim	(x→-3+)	|2x	+	6|	/	(2x	+	6)	=	1.From	the	left	(x	<	-3),	|2x	+	6|	=	-(2x	+	6),	so	lim	(x→-3-)	|2x	+	6|	/
(2x	+	6)	=	-1.Since	the	left-hand	limit	does	not	equal	the	right-hand	limit,	the	limit	lim	(x→-3)	|2x	+	6|	/	(2x	+	6)	does	not	exist.Example	6Find	lim	(x→4)	|x²	-	16|	/	(x	-	4).SolutionWe	can	simplify	|x²	-	16|	to	|x	-	4||x	+	4|.	Therefore,	the	limit	expression	becomes	|x	+	4|.So,	lim	(x→4)	|x²	-	16|	/	(x	-	4)	=	|4	+	4|	=	8.Example	7Find	lim	(x→0)	|sin(x)|	/	x.Figure-
4.SolutionFrom	the	right	(x	>	0),	|sin(x)|	=	sin(x),	so	lim	(x→0+)	|sin(x)|	/	x	=	1.From	the	left	(x	<	0),	|sin(x)|	=	-sin(x),	so	lim	(x→0-)	|sin(x)|	/	x	=	-1.Since	the	left-hand	limit	does	not	equal	the	right-hand	limit,	the	limit	lim	(x→0)	|sin(x)|	/	x	does	not	exist.Example	8Find	lim	(x→0)	|x|	/	sin(x).SolutionFrom	the	right	(x	>	0),	|x|	=	x,	so	lim	(x→0+)	|x|	/	sin(x)
=	1.From	the	left	(x	<	0),	|x|	=	-x,	so	lim	(x→0-)	|x|	/	sin(x)	=	-1.Since	the	left-hand	limit	does	not	equal	the	right-hand	limit,	the	limit	lim	(x→0)	|x|	/	sin(x)	does	not	exist.ApplicationsThe	concept	of	absolute	value	limits	not	only	holds	importance	within	the	realm	of	mathematical	theory,	but	it	also	boasts	applications	across	numerous	scientific	fields.
Here	are	a	few	notable	examples:PhysicsIn	physics,	absolute	value	limits	often	come	into	play	while	evaluating	certain	physical	quantities	that	cannot	have	a	negative	magnitude.	For	instance,	determining	the	time	at	which	a	particle	reaches	a	certain	point,	or	studying	properties	of	wave	functions	in	quantum	mechanics.EngineeringIn	control	systems
engineering,	the	limit	of	absolute	values	is	often	used	to	analyze	system	stability.	In	electrical	engineering,	it’s	used	to	find	the	maximum	tolerable	threshold	levels	for	signals	and	currents.Computer	ScienceIn	algorithm	complexity	analysis	(Big	O	notation),	limits	of	absolute	values	can	help	determine	upper	or	lower	bounds	of	algorithm	performance.
They’re	also	used	in	computer	graphics	to	create	certain	visual	effects	and	perform	image	processing.EconomicsAbsolutely!	In	economics,	absolute	value	limits	are	used	to	find	equilibrium	points,	analyze	trends,	or	determine	the	sensitivity	of	one	economic	variable	to	changes	in	another.BiologyIn	mathematical	biology,	these	limits	can	model
population	dynamics	where	the	populations	must	remain	non-negative.Environmental	ScienceThe	concept	of	limits,	including	absolute	value	limits,	is	used	in	modeling	pollutant	dispersion,	population	growth,	resource	management,	and	more.Statistics	and	Data	AnalysisThe	absolute	value	limit	is	used	when	dealing	with	absolute	differences,
establishing	thresholds,	or	defining	metrics	like	Mean	Absolute	Error	(MAE).All	images	were	created	with	GeoGebra.	The	limit	of	an	absolute	value	function	often	involves	determining	how	the	function	behaves	as	the	input	approaches	a	particular	point,	especially	around	points	where	the	expression	inside	the	absolute	value	changes	sign.	Key
Concept	Often	limits	involving	absolute	value	do	not	exist.	For	example:	$$\lim_{x\to0}\dfrac{x}{|x|}.$$	Because	of	the	discontinuity	on	the	graph	of	$y=\dfrac{x}{|x|}$,	this	limit	does	not	exist.	When	dealing	with	limits	of	absolute	value	functions,	you	may	need	to	consider	one-sided	limits	to	handle	the	behavior	on	both	sides	of	the	point	of	interest.
Example	Let’s	find	the	limit:	$$\lim_{x	\to	3}	|x	–	3|$$	Similar	steps	apply	here:	1.	Left-hand	limit:	$$\lim_{x	\to	3^-}	|x	–	3|	=	\lim_{x	\to	3^-}	-(x	–	3)	=	0$$	2.	Right-hand	limit:	$$\lim_{x	\to	3^+}	|x	–	3|	=	\lim_{x	\to	3^+}	(x	–	3)	=	0$$	Again,	since	both	limits	are	equal,	we	have:	$$\lim_{x	\to	3}	|x	–	3|	=	0$$	Example	with	a	Non-zero	Result	For	a
different	approach,	consider	$$\lim_{x	\to	3}	|x^2	–	1|$$	In	the	proximity	of	$x=3$	the	expression	inside	the	absolute	value	is	positive,	thus	we	can	drop	the	absolute	value	lines:	$$\lim_{x	\to	3}	|x^2	–	1|	=	3^2	–	1	=	8$$	Alternatively,	if	we	were	asked	to	find	the	limit:	$$\lim_{x	\to	0}	|x^2	–	1|$$	Now,	in	the	proximity	of	$x=0$	the	expression	inside
the	absolute	value	is	negative,	thus	we	will	remove	the	absolute	value	and	switch	the	sign	of	each	term	of	the	expression	inside.	$$\lim_{x	\to	0}	|x^2	–	1|	=	-0^2	+	1	=	1$$	Conclusion	When	finding	limits	of	the	expressions	with	absolute	value,	consider	breaking	them	into	cases	based	on	where	the	expression	inside	becomes	positive	or	negative.
First,	if	there	is	a	square	root,	then	factor	out	the	largest	power	of	$$x$$	that	is	under	the	radical.	Second,	simplify	any	absolute	values.	Third,	factor	out	the	highest	power	of	$$x$$	from	both	numerator	and	denominator,	and	divide	out	the	common	factor.	Fourth,	evaluate	the	limit.	Remember,	$$\frac	n{x^p}$$	forms	go	to	zero	as	$$x$$	becomes
large.	Important	algebra	ideas	you	need	to	be	familiar	with.	$$\sqrt{ab}	=	\sqrt	a\cdot	\sqrt	b$$	$$\sqrt{a^2}	=	|a|$$	$$|a|	=	a$$	if	$$a$$	is	positive,	but	$$|a|	=	-a$$	if	$$4a$$	is	negative.	Examples	Evaluate	$$\displaystyle	\lim_{x\to\infty}\,\frac{|x|+2}{4x	+	3}$$	Step	1	Simplify	the	absolute	value.	Since	the	limit	looks	at	positive	values	of	$$x$$,
we	know	$$|x|	=	x$$.	So	we	can	rewrite	the	limit	as	$$	\displaystyle\lim_{x\to\infty}\,\frac{\blue{|x|}+2}{4x	+	3}	%	=	\displaystyle\lim_{x\to\infty}\,\frac{\blue	x	+	2}{4x	+	3}.	$$	Step	2	Factor	the	$$x$$	out	of	the	numerator	and	denominator.	Then	divide	out	the	common	factor.	$$	\begin{align*}%	\lim_{x\to\infty}\,\frac{\blue	x	+	2}	{4\blue	x	+	3}
%	&	=	\lim_{x\to\infty}\,\frac{%	\blue	x\left(%	1	+	\frac	2	{\blue	x}	\right)	}	{%	\blue	x\left(%	4	+	\frac	3	{\blue	x}	\right)	}\\[6pt]	%	&	=	\lim_{x\to\infty}\,\frac{%	1	+	\frac	2	x	}	{%	4	+	\frac	3	x	}	\end{align*}	$$	Step	3	Evaluate	the	limit.	$$	\displaystyle\lim_{x\to\infty}\,\frac{%	1	+	\blue{\frac	2	x}	}	{%	4	+	\red{\frac	3	x}	}	%	=	\frac{1	+	\blue	0}
{4	+	\red	0}	%	=	\frac	1	4	$$	Answer	$$\displaystyle	\lim_{x\to\infty}\,\frac{|x|	+	2}{4x	+	3}	=	\frac	1	4$$	Evaluate	$$\displaystyle	\lim_{x\to-\infty}\,\frac{|x|+2}{4x+3}$$	Notice	that	this	is	the	same	function	as	in	Example	1,	but	this	time	$$x$$	is	becoming	negative.	Step	1	Simplify	the	absolute	value.	Since	this	limit	is	looking	at	negative	values	of
$$x$$,	we	know	$$|x|	=	-x$$.	This	means	we	can	rewrite	the	limit	as	$$	\\	\displaystyle\lim_{x\to-\infty}\,\frac{\blue{|x|}+	2}{4x+3}	%	=	\lim_{x\to-\infty}\,\frac{\blue{-x}	+	2}{4x+3}	\\	$$	Step	2	Factor	the	largest	power	of	$$x$$	out	of	the	numerator	and	denominator.	Then	divide	out	the	common	factor.	$$	\begin{align*}%	\lim_{x\to-
\infty}\,\frac{-\blue	x+	2}{4\blue	x+3}	%	&	=	\lim_{x\to-\infty}\,\frac{%	\blue	x	\left(%	-1	+	\frac	2{\blue	x}	\right)	}	{%	\blue	x\left(%	4+\frac	3{\blue	x}	\right)	}\\[6pt]	%	&	=	\lim_{x\to-\infty}\,\frac{-1	+	\frac	2	x}{4+\frac	3	x}	\end{align*}	$$	Step	3	Evaluate	the	limit.	$$	\displaystyle\lim_{x\to-\infty}\,\frac{%	-1	+	\blue{\frac	2	x}	}	{%
4+\red{\frac	3	x}	}	%	=	\frac{-1	+	\blue	0}{4+\red	0}	%	=	-\frac	1	4	$$	Answer	$$\displaystyle	\lim_{x\to-\infty}\,\frac{|x|}{4x+3}	=	-	\frac	1	4$$	Evaluate	$$\displaystyle	\lim_{x\to	\infty}\,\frac{3x	+	\sqrt{4x^2+5}}{6x+1}$$	Step	1	Factor	the	$$x^2$$	out	from	the	radical.	$$	\begin{align*}	\lim_{x\to	\infty}\,\frac{%	3x	+	\sqrt{%	4\blue{x^2}+5
}	}	{6x+1}	%	&	=	\lim_{x\to	\infty}\,\frac{%	3x	+	\sqrt{%	\blue{x^2}	\left(%	4+\frac	5	{x^2}	\right)	}	}	{6x+1}%	\\[6pt]	%	&	=	\lim_{x\to	\infty}\,\frac{%	3x	+	\sqrt{%	\blue{x^2}	}	\cdot\sqrt{%	4+\frac	5	{x^2}	}	}	{6x+1}\\[6pt]	%	&	=	\lim_{x\to	\infty}\,\frac{%	3x	+	\blue{|x|}%	\cdot\sqrt{%	4+\frac	5	{x^2}%	}%	}%	{6x+1}%	\end{align*}	$$
Step	2	Simplify	the	absolute	value.	Since	the	limit	examines	positive	$$x$$-values,	we	know	$$|x|	=	x$$.	$$	\\	\displaystyle\lim_{x\to	\infty}\,\frac{%	3x	+	\blue{|x|}%	\cdot\sqrt{4+\frac	5	{x^2}}%	}	{6x+1}	%	=	\lim_{x\to	\infty}\,\frac{%	3x	+	\blue{x}%	\cdot\sqrt{4+\frac	5	{x^2}}%	}	{6x+1}	\\	$$	Step	3	Factor	the	largest	power	of	$$x$$	out	of
the	numerator	and	denominator.	Then	divide	out	the	common	factor.	$$	\begin{align*}%	\lim_{x\to	\infty}\,\frac{%	3\blue	x	+	\blue	x	\cdot\sqrt{4+\frac	5	{x^2}}	}	{6\blue	x+1}	%	&	=	\lim_{x\to	\infty}\,\frac{%	\blue	x\left(%	3	+	\sqrt{4+\frac	5	{x^2}}\,%	\right)	}	{%	\blue	x\left(%	6+\frac	1	x%	\right)%	}\\[6pt]	%	&	=	\lim_{x\to	\infty}\,\frac{%	3	+
\sqrt{%	4+\frac	5	{x^2}%	}	}	{6+\frac	1	x}	\end{align*}	$$	Step	4	Evaluate	the	limit.	$$	\begin{align*}%	\lim_{x\to	\infty}\,\frac{%	3	+	\sqrt{%	4+\blue{\frac	5	{x^2}}%	}%	}%	{6+\red{\frac	1	x}}%	%	&	=\frac{%	3	+	\sqrt{4+\blue	0}	}	{6+\red	0}	\\[6pt]	%	&	=	\frac{3	+	\sqrt	4}	6	\\[6pt]	%	&	=	\frac	5	6	\end{align*}	$$	Answer	$$\displaystyle
\lim_{x\to	\infty}\,\frac{3x	+	\sqrt{4x^2+5}}{6x+1}	=	\frac	5	6$$	Evaluate	$$\displaystyle	\lim_{x\to-\infty}\,\frac{2x-\sqrt{9x^2-4}}{8x	+3}$$	Step	1	Factor	the	$$x^2$$	out	of	the	square-root.	$$	\begin{align*}	\lim_{x\to-\infty}\,\frac{%	2x-\sqrt{%	9\blue{x^2}-4%	}%	}%	{8x	+3}	%	&	=	\lim_{x\to-\infty}\,\frac{%	2x-\sqrt{%	\blue{x^2}\left(%	9
-	\frac	4	{x^2}%	\right)%	}%	}%	{8x	+3}%	\\[6pt]	%	&	=	\lim_{x\to-\infty}\,\frac{%	2x-\sqrt{%	\blue{x^2}%	}%	\cdot	\sqrt{%	9	-	\frac	4	{x^2}%	}%	}%	{8x	+3}	\\[6pt]	%	&	=	\lim_{x\to-\infty}\,\frac{%	2x-\blue{|x|}\cdot	\sqrt{9	-	\frac	4	{x^2}}	}	{8x	+3}	\end{align*}	$$	Step	2	Simplify	the	absolute	value.	Since	the	limit	examines	negative	$$x$$-
values,	we	know	$$|x|	=	-x$$.	$$	\begin{align*}%	&	\quad	\lim_{x\to-\infty}\,\frac{%	2x-\blue{|x|}\cdot	\sqrt{9	-	\frac	4	{x^2}}	}	{8x	+3}\\[6pt]	%	&	=	\lim_{x\to-\infty}\,\frac{%	2x-\blue{(-x)}\cdot	\sqrt{9	-	\frac	4	{x^2}}	}	{8x	+3}	\\[6pt]	%	&	=	\lim_{x\to-\infty}\,\frac{%	2x	\blue{+x}\cdot	\sqrt{9	-	\frac	4	{x^2}}	}	{8x	+3}	\end{align*}	$$	Step	3
Factor	the	highest	power	of	$$x$$	out	of	the	numerator	and	denominator.	Then	divide	out	the	common	factor.	$$	\begin{align*}%	\lim_{x\to-\infty}\,\frac{%	2\blue	x+\blue	x\cdot	\sqrt{9	-	\frac	4	{x^2}}	}	{8\blue	x	+3}	%	&	=	\lim_{x\to-\infty}\,\frac{%	\blue	x	\left(%	2+\sqrt{9	-	\frac	4	{x^2}}	\right)	}	{\blue	x	\left(8	+	\frac	3	x\right)}	\\[6pt]	%	&	=
\lim_{x\to-\infty}\,\frac{%	2+\sqrt{9	-	\frac	4	{x^2}}	}	{8	+	\frac	3	x}	\end{align*}	$$	Step	4	Evaluate	the	limit.	$$	\displaystyle\lim_{x\to-\infty}\,\frac{%	2+\sqrt{%	9	-	\blue{\frac	4	{x^2}}	}	}	{8	+	\red{\frac	3	x}}	%	=	\frac{%	2+\sqrt{9	-	\blue	0}	}	{8	+	\red	0}	%	=	\frac	5	8	$$	Answer	$$\displaystyle	\lim_{x\to-\infty}\,\frac{2x-\sqrt{9x^2-4}}
{8x	+3}	=	\frac	5	8$$	Continue	to	Practice	Problems	Error	:	Please	Click	on	"Not	a	robot",	then	try	downloading	again.	2.3.1	Recognize	the	basic	limit	laws.	2.3.2	Use	the	limit	laws	to	evaluate	the	limit	of	a	function.	2.3.3	Evaluate	the	limit	of	a	function	by	factoring.	2.3.4	Use	the	limit	laws	to	evaluate	the	limit	of	a	polynomial	or	rational	function.	2.3.5
Evaluate	the	limit	of	a	function	by	factoring	or	by	using	conjugates.	2.3.6	Evaluate	the	limit	of	a	function	by	using	the	squeeze	theorem.	In	the	previous	section,	we	evaluated	limits	by	looking	at	graphs	or	by	constructing	a	table	of	values.	In	this	section,	we	establish	laws	for	calculating	limits	and	learn	how	to	apply	these	laws.	In	the	Student	Project	at
the	end	of	this	section,	you	have	the	opportunity	to	apply	these	limit	laws	to	derive	the	formula	for	the	area	of	a	circle	by	adapting	a	method	devised	by	the	Greek	mathematician	Archimedes.	We	begin	by	restating	two	useful	limit	results	from	the	previous	section.	These	two	results,	together	with	the	limit	laws,	serve	as	a	foundation	for	calculating
many	limits.	The	first	two	limit	laws	were	stated	in	Two	Important	Limits	and	we	repeat	them	here.	These	basic	results,	together	with	the	other	limit	laws,	allow	us	to	evaluate	limits	of	many	algebraic	functions.	For	any	real	number	a	and	any	constant	c,	limx→ax=alimx→ax=a	limx→ac=climx→ac=c	The	limit	of	x	as	x	approaches	a	is	a:
limx→2x=2.limx→2x=2.	The	limit	of	a	constant	is	that	constant:	limx→25=5.limx→25=5.	We	now	take	a	look	at	the	limit	laws,	the	individual	properties	of	limits.	The	proofs	that	these	laws	hold	are	omitted	here.	Let	f(x)f(x)	and	g(x)g(x)	be	defined	for	all	x≠ax≠a	over	some	open	interval	containing	a.	Assume	that	L	and	M	are	real	numbers	such	that
limx→af(x)=Llimx→af(x)=L	and	limx→ag(x)=M.limx→ag(x)=M.	Let	c	be	a	constant.	Then,	each	of	the	following	statements	holds:	Sum	law	for	limits:	limx→a(f(x)+g(x))=limx→af(x)+limx→ag(x)=L+Mlimx→a(f(x)+g(x))=limx→af(x)+limx→ag(x)=L+M	Difference	law	for	limits:	limx→a(f(x)−g(x))=limx→af(x)−limx→ag(x)=L−Mlimx→a(f(x)−g(x))=limx→af(x)
−limx→ag(x)=L−M	Constant	multiple	law	for	limits:	limx→acf(x)=c·limx→af(x)=cLlimx→acf(x)=c·limx→af(x)=cL	Product	law	for	limits:	limx→a(f(x)·g(x))=limx→af(x)·limx→ag(x)=L·Mlimx→a(f(x)·g(x))=limx→af(x)·limx→ag(x)=L·M	Quotient	law	for	limits:	limx→af(x)g(x)=limx→af(x)limx→ag(x)=LMlimx→af(x)g(x)=limx→af(x)limx→ag(x)=LM	for	M≠0M≠0
Power	law	for	limits:	limx→a(f(x))n=(limx→af(x))n=Lnlimx→a(f(x))n=(limx→af(x))n=Ln	for	every	positive	integer	n.	Root	law	for	limits:	limx→af(x)n=limx→af(x)n=Lnlimx→af(x)n=limx→af(x)n=Ln	for	all	L	if	n	is	odd	and	for	L≥0L≥0	if	n	is	even	and	f(x)≥0f(x)≥0.	We	now	practice	applying	these	limit	laws	to	evaluate	a	limit.	Use	the	limit	laws	to	evaluate
limx→−3(4x+2).limx→−3(4x+2).	Let’s	apply	the	limit	laws	one	step	at	a	time	to	be	sure	we	understand	how	they	work.	We	need	to	keep	in	mind	the	requirement	that,	at	each	application	of	a	limit	law,	the	new	limits	must	exist	for	the	limit	law	to	be	applied.	lim	x	→	−3	(	4	x	+	2	)	=	lim	x	→	−3	4	x	+	lim	x	→	−3	2	Apply	the	sum	law.	=	4	·	lim	x	→	−3	x	+
lim	x	→	−3	2	Apply	the	constant	multiple	law.	=	4	·	(	−3	)	+	2	=	−10	.	Apply	the	basic	limit	results	and	simplify.	lim	x	→	−3	(	4	x	+	2	)	=	lim	x	→	−3	4	x	+	lim	x	→	−3	2	Apply	the	sum	law.	=	4	·	lim	x	→	−3	x	+	lim	x	→	−3	2	Apply	the	constant	multiple	law.	=	4	·	(	−3	)	+	2	=	−10	.	Apply	the	basic	limit	results	and	simplify.	Use	the	limit	laws	to	evaluate
limx→22x2−3x+1x3+4.limx→22x2−3x+1x3+4.	To	find	this	limit,	we	need	to	apply	the	limit	laws	several	times.	Again,	we	need	to	keep	in	mind	that	as	we	rewrite	the	limit	in	terms	of	other	limits,	each	new	limit	must	exist	for	the	limit	law	to	be	applied.	lim	x	→	2	2	x	2	−	3	x	+	1	x	3	+	4	=	lim	x	→	2	(	2	x	2	−	3	x	+	1	)	lim	x	→	2	(	x	3	+	4	)	Apply	the
quotient	law,	making	sure	that.	(	2	)	3	+	4	≠	0	=	2	·	lim	x	→	2	x	2	−	3	·	lim	x	→	2	x	+	lim	x	→	2	1	lim	x	→	2	x	3	+	lim	x	→	2	4	Apply	the	sum	law	and	constant	multiple	law.	=	2	·	(	lim	x	→	2	x	)	2	−	3	·	lim	x	→	2	x	+	lim	x	→	2	1	(	lim	x	→	2	x	)	3	+	lim	x	→	2	4	Apply	the	power	law.	=	2	(	4	)	−	3	(	2	)	+	1	(	2	)	3	+	4	=	1	4	.	Apply	the	basic	limit	laws	and	simplify.
lim	x	→	2	2	x	2	−	3	x	+	1	x	3	+	4	=	lim	x	→	2	(	2	x	2	−	3	x	+	1	)	lim	x	→	2	(	x	3	+	4	)	Apply	the	quotient	law,	making	sure	that.	(	2	)	3	+	4	≠	0	=	2	·	lim	x	→	2	x	2	−	3	·	lim	x	→	2	x	+	lim	x	→	2	1	lim	x	→	2	x	3	+	lim	x	→	2	4	Apply	the	sum	law	and	constant	multiple	law.	=	2	·	(	lim	x	→	2	x	)	2	−	3	·	lim	x	→	2	x	+	lim	x	→	2	1	(	lim	x	→	2	x	)	3	+	lim	x	→	2	4	Apply
the	power	law.	=	2	(	4	)	−	3	(	2	)	+	1	(	2	)	3	+	4	=	1	4	.	Apply	the	basic	limit	laws	and	simplify.	Use	the	limit	laws	to	evaluate	limx→6(2x−1)x+4.limx→6(2x−1)x+4.	In	each	step,	indicate	the	limit	law	applied.	By	now	you	have	probably	noticed	that,	in	each	of	the	previous	examples,	it	has	been	the	case	that	limx→af(x)=f(a).limx→af(x)=f(a).	This	is	not
always	true,	but	it	does	hold	for	all	polynomials	for	any	choice	of	a	and	for	all	rational	functions	at	all	values	of	a	for	which	the	rational	function	is	defined.	Let	p(x)p(x)	and	q(x)q(x)	be	polynomial	functions.	Let	a	be	a	real	number.	Then,	limx→ap(x)=p(a)limx→ap(x)=p(a)	limx→ap(x)q(x)=p(a)q(a)whenq(a)≠0.limx→ap(x)q(x)=p(a)q(a)whenq(a)≠0.	To	see
that	this	theorem	holds,	consider	the	polynomial	p(x)=cnxn+cn−1xn−1+⋯+c1x+c0.p(x)=cnxn+cn−1xn−1+⋯+c1x+c0.	By	applying	the	sum,	constant	multiple,	and	power	laws,	we	end	up	with	limx→ap(x)=limx→a(cnxn+cn−1xn−1+⋯+c1x+c0)=cn(limx→ax)n+cn−1(limx→ax)n−1+⋯+c1(limx→ax)+limx→ac0=cnan+cn−1an−1+⋯
+c1a+c0=p(a).limx→ap(x)=limx→a(cnxn+cn−1xn−1+⋯+c1x+c0)=cn(limx→ax)n+cn−1(limx→ax)n−1+⋯+c1(limx→ax)+limx→ac0=cnan+cn−1an−1+⋯+c1a+c0=p(a).	It	now	follows	from	the	quotient	law	that	if	p(x)p(x)	and	q(x)q(x)	are	polynomials	for	which	q(a)≠0,q(a)≠0,	then	limx→ap(x)q(x)=p(a)q(a).limx→ap(x)q(x)=p(a)q(a).	Example	2.16	applies
this	result.	Evaluate	the	limx→32x2−3x+15x+4.limx→32x2−3x+15x+4.	Since	3	is	in	the	domain	of	the	rational	function	f(x)=2x2−3x+15x+4,f(x)=2x2−3x+15x+4,	we	can	calculate	the	limit	by	substituting	3	for	x	into	the	function.	Thus,	lim	x	→	3	2	x	2	−	3	x	+	1	5	x	+	4	=	10	19	.	lim	x	→	3	2	x	2	−	3	x	+	1	5	x	+	4	=	10	19	.	Evaluate
limx→−2(3x3−2x+7).limx→−2(3x3−2x+7).	As	we	have	seen,	we	may	evaluate	easily	the	limits	of	polynomials	and	limits	of	some	(but	not	all)	rational	functions	by	direct	substitution.	However,	as	we	saw	in	the	introductory	section	on	limits,	it	is	certainly	possible	for	limx→af(x)limx→af(x)	to	exist	when	f(a)f(a)	is	undefined.	The	following	observation
allows	us	to	evaluate	many	limits	of	this	type:	If	for	all	x≠a,f(x)=g(x)x≠a,f(x)=g(x)	over	some	open	interval	containing	a,	then	limx→af(x)=limx→ag(x).limx→af(x)=limx→ag(x).	To	understand	this	idea	better,	consider	the	limit	limx→1x2−1x−1.limx→1x2−1x−1.	The	function	f(x)=x2−1x−1=(x−1)(x+1)x−1f(x)=x2−1x−1=(x−1)(x+1)x−1	and	the	function
g(x)=x+1g(x)=x+1	are	identical	for	all	values	of	x≠1.x≠1.	The	graphs	of	these	two	functions	are	shown	in	Figure	2.24.	Figure	2.24	The	graphs	of	f(x)f(x)	and	g(x)g(x)	are	identical	for	all	x≠1.x≠1.	Their	limits	at	1	are	equal.	We	see	that	limx→1x2−1x−1=limx→1(x−1)(x+1)x−1=limx→1(x+1)=2.limx→1x2−1x−1=limx→1(x−1)(x+1)x−1=limx→1(x+1)=2.
The	limit	has	the	form	limx→af(x)g(x),limx→af(x)g(x),	where	limx→af(x)=0limx→af(x)=0	and	limx→ag(x)=0.limx→ag(x)=0.	(In	this	case,	we	say	that	f(x)/g(x)f(x)/g(x)	has	the	indeterminate	form	0/0.)0/0.)	The	following	Problem-Solving	Strategy	provides	a	general	outline	for	evaluating	limits	of	this	type.	First,	we	need	to	make	sure	that	our	function	has
the	appropriate	form	and	cannot	be	evaluated	immediately	using	the	limit	laws.	We	then	need	to	find	a	function	that	is	equal	to	h(x)=f(x)/g(x)h(x)=f(x)/g(x)	for	all	x≠ax≠a	over	some	interval	containing	a.	To	do	this,	we	may	need	to	try	one	or	more	of	the	following	steps:	If	f(x)f(x)	and	g(x)g(x)	are	polynomials,	we	should	factor	each	function	and	cancel
out	any	common	factors.	If	the	numerator	or	denominator	contains	a	difference	involving	a	square	root,	we	should	try	multiplying	the	numerator	and	denominator	by	the	conjugate	of	the	expression	involving	the	square	root.	If	f(x)/g(x)f(x)/g(x)	is	a	complex	fraction,	we	begin	by	simplifying	it.	Last,	we	apply	the	limit	laws.	The	next	examples
demonstrate	the	use	of	this	Problem-Solving	Strategy.	Example	2.17	illustrates	the	factor-and-cancel	technique;	Example	2.18	shows	multiplying	by	a	conjugate.	In	Example	2.19,	we	look	at	simplifying	a	complex	fraction.	Evaluate	limx→3x2−3x2x2−5x−3.limx→3x2−3x2x2−5x−3.	Step	1.	The	function	f(x)=x2−3x2x2−5x−3f(x)=x2−3x2x2−5x−3	is
undefined	for	x=3.x=3.	In	fact,	if	we	substitute	3	into	the	function	we	get	0/0,0/0,	which	is	indeterminate.	Factoring	and	canceling	is	a	good	strategy:	lim	x	→	3	x	2	−	3	x	2	x	2	−	5	x	−	3	=	lim	x	→	3	x	(	x	−	3	)	(	x	−	3	)	(	2	x	+	1	)	lim	x	→	3	x	2	−	3	x	2	x	2	−	5	x	−	3	=	lim	x	→	3	x	(	x	−	3	)	(	x	−	3	)	(	2	x	+	1	)	Step	2.	For	all
x≠3,x2−3x2x2−5x−3=x2x+1.x≠3,x2−3x2x2−5x−3=x2x+1.	Therefore,	lim	x	→	3	x	(	x	−	3	)	(	x	−	3	)	(	2	x	+	1	)	=	lim	x	→	3	x	2	x	+	1	.	lim	x	→	3	x	(	x	−	3	)	(	x	−	3	)	(	2	x	+	1	)	=	lim	x	→	3	x	2	x	+	1	.	Step	3.	Evaluate	using	the	limit	laws:	lim	x	→	3	x	2	x	+	1	=	3	7	.	lim	x	→	3	x	2	x	+	1	=	3	7	.	Evaluate	limx→−3x2+4x+3x2−9.limx→−3x2+4x+3x2−9.	Evaluate
limx→−1x+2−1x+1.limx→−1x+2−1x+1.	Step	1.	x+2−1x+1x+2−1x+1	has	the	form	0/00/0	at	−1.	Let’s	begin	by	multiplying	by	x+2+1,x+2+1,	the	conjugate	of	x+2−1,x+2−1,	on	the	numerator	and	denominator:	lim	x	→	−1	x	+	2	−	1	x	+	1	=	lim	x	→	−1	x	+	2	−	1	x	+	1	·	x	+	2	+	1	x	+	2	+	1	.	lim	x	→	−1	x	+	2	−	1	x	+	1	=	lim	x	→	−1	x	+	2	−	1	x	+	1	·	x	+
2	+	1	x	+	2	+	1	.	Step	2.	We	then	multiply	out	the	numerator.	We	don’t	multiply	out	the	denominator	because	we	are	hoping	that	the	(x+1)(x+1)	in	the	denominator	cancels	out	in	the	end:	=	lim	x	→	−1	x	+	1	(	x	+	1	)	(	x	+	2	+	1	)	.	=	lim	x	→	−1	x	+	1	(	x	+	1	)	(	x	+	2	+	1	)	.	Step	3.	Then	we	cancel:	=	lim	x	→	−1	1	x	+	2	+	1	.	=	lim	x	→	−1	1	x	+	2	+	1	.
Step	4.	Last,	we	apply	the	limit	laws:	lim	x	→	−1	1	x	+	2	+	1	=	1	2	.	lim	x	→	−1	1	x	+	2	+	1	=	1	2	.	Evaluate	limx→5x−1−2x−5.limx→5x−1−2x−5.	Evaluate	limx→11x+1−12x−1.limx→11x+1−12x−1.	Step	1.	1x+1−12x−11x+1−12x−1	has	the	form	0/00/0	at	1.	We	simplify	the	algebraic	fraction	by	multiplying	by	2(x+1)/2(x+1):2(x+1)/2(x+1):	lim	x	→	1	1
x	+	1	−	1	2	x	−	1	=	lim	x	→	1	1	x	+	1	−	1	2	x	−	1	·	2	(	x	+	1	)	2	(	x	+	1	)	.	lim	x	→	1	1	x	+	1	−	1	2	x	−	1	=	lim	x	→	1	1	x	+	1	−	1	2	x	−	1	·	2	(	x	+	1	)	2	(	x	+	1	)	.	Step	2.	Next,	we	multiply	through	the	numerators.	Do	not	multiply	the	denominators	because	we	want	to	be	able	to	cancel	the	factor	(x−1):(x−1):	=	lim	x	→	1	2	−	(	x	+	1	)	2	(	x	−	1	)	(	x	+	1	)	.	=
lim	x	→	1	2	−	(	x	+	1	)	2	(	x	−	1	)	(	x	+	1	)	.	Step	3.	Then,	we	simplify	the	numerator:	=	lim	x	→	1	−	x	+	1	2	(	x	−	1	)	(	x	+	1	)	.	=	lim	x	→	1	−	x	+	1	2	(	x	−	1	)	(	x	+	1	)	.	Step	4.	Now	we	factor	out	−1	from	the	numerator:	=	lim	x	→	1	−	(	x	−	1	)	2	(	x	−	1	)	(	x	+	1	)	.	=	lim	x	→	1	−	(	x	−	1	)	2	(	x	−	1	)	(	x	+	1	)	.	Step	5.	Then,	we	cancel	the	common	factors	of
(x−1):(x−1):	=	lim	x	→	1	−1	2	(	x	+	1	)	.	=	lim	x	→	1	−1	2	(	x	+	1	)	.	Step	6.	Last,	we	evaluate	using	the	limit	laws:	lim	x	→	1	−1	2	(	x	+	1	)	=	−	1	4	.	lim	x	→	1	−1	2	(	x	+	1	)	=	−	1	4	.	Evaluate	limx→−31x+2+1x+3.limx→−31x+2+1x+3.	Example	2.20	does	not	fall	neatly	into	any	of	the	patterns	established	in	the	previous	examples.	However,	with	a	little
creativity,	we	can	still	use	these	same	techniques.	Evaluate	limx→0(1x+5x(x−5)).limx→0(1x+5x(x−5)).	Both	1/x1/x	and	5/x(x−5)5/x(x−5)	fail	to	have	a	limit	at	zero.	Since	neither	of	the	two	functions	has	a	limit	at	zero,	we	cannot	apply	the	sum	law	for	limits;	we	must	use	a	different	strategy.	In	this	case,	we	find	the	limit	by	performing	addition	and
then	applying	one	of	our	previous	strategies.	Observe	that	1	x	+	5	x	(	x	−	5	)	=	x	−	5	+	5	x	(	x	−	5	)	=	x	x	(	x	−	5	)	.	1	x	+	5	x	(	x	−	5	)	=	x	−	5	+	5	x	(	x	−	5	)	=	x	x	(	x	−	5	)	.	Thus,	lim	x	→	0	(	1	x	+	5	x	(	x	−	5	)	)	=	lim	x	→	0	x	x	(	x	−	5	)	=	lim	x	→	0	1	x	−	5	=	−	1	5	.	lim	x	→	0	(	1	x	+	5	x	(	x	−	5	)	)	=	lim	x	→	0	x	x	(	x	−	5	)	=	lim	x	→	0	1	x	−	5	=	−	1	5	.
Evaluate	limx→3(1x−3−4x2−2x−3).limx→3(1x−3−4x2−2x−3).	Let’s	now	revisit	one-sided	limits.	Simple	modifications	in	the	limit	laws	allow	us	to	apply	them	to	one-sided	limits.	For	example,	to	apply	the	limit	laws	to	a	limit	of	the	form	limx→a−h(x),limx→a−h(x),	we	require	the	function	h(x)h(x)	to	be	defined	over	an	open	interval	of	the	form	(b,a);
(b,a);	for	a	limit	of	the	form	limx→a+h(x),limx→a+h(x),	we	require	the	function	h(x)h(x)	to	be	defined	over	an	open	interval	of	the	form	(a,c).(a,c).	Example	2.21	illustrates	this	point.	Evaluate	each	of	the	following	limits,	if	possible.	limx→3−x−3limx→3−x−3	limx→3+x−3limx→3+x−3	Figure	2.25	illustrates	the	function	f(x)=x−3f(x)=x−3	and	aids	in	our
understanding	of	these	limits.	Figure	2.25	The	graph	shows	the	function	f(x)=x−3.f(x)=x−3.	The	function	f(x)=x−3f(x)=x−3	is	defined	over	the	interval	[3,+∞).[3,+∞).	Since	this	function	is	not	defined	to	the	left	of	3,	we	cannot	apply	the	limit	laws	to	compute	limx→3−x−3.limx→3−x−3.	In	fact,	since	f(x)=x−3f(x)=x−3	is	undefined	to	the	left	of	3,
limx→3−x−3limx→3−x−3	does	not	exist.	Since	f(x)=x−3f(x)=x−3	is	defined	to	the	right	of	3,	the	limit	laws	do	apply	to	limx→3+x−3.limx→3+x−3.	By	applying	these	limit	laws	we	obtain	limx→3+x−3=0.limx→3+x−3=0.	In	Example	2.22	we	look	at	one-sided	limits	of	a	piecewise-defined	function	and	use	these	limits	to	draw	a	conclusion	about	a	two-
sided	limit	of	the	same	function.	For	f(x)={4x−3ifx
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