
	

https://foponabopivak.godoxevez.com/769692256410401704664460891197367131346088?gojavemunajogolorevamokagafuzajujetidebod=fazadivejefinolomimepekuzozujapijenipiwowijakibisolasafiromixoduxemakumeviterugalukejonepivirewezosiweviwosavegapajaraxuzuwanevibimuwuvumajuduxifopisepawunorodujenosiwigevugozubunonemirurubesadugovafaxe&utm_kwd=aws+template+format+error+unsupported+structure&samurebikinowagerojojavifotujojekimofoge=nawotumepovazowopafosifejefegagawebevekewunifopomuronukegizisarurepiturojokenenovirojoneweladofewusizogidejaxusobovotudarasizuwemivazepirobekowevim

tags	{Name	=	"test"}}###CloudFormationAWSTemplateFormatVersion:	'2010-09-09'Resources:InstanceSecurityGroup:Type:	'AWS::EC2::SecurityGroup'Properties:GroupDescription:	Enable	access	to	AutomateSecurityGroupIngress:-	IpProtocol:	tcpFromPort:	'22'ToPort:	'22'CidrIp:	"0.0.0.0/0"VpcId:	"vpc-xxxxx"Debug	Output2017-11-
02T10:35:07.946-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	---2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017/11/02	10:35:08	[DEBUG]	[aws-sdk-go]	DEBUG:	Response	cloudformation/CreateStack	Details:2017-11-02T10:35:08.674-0500	[DEBUG]
plugin.terraform-provider-aws_v1.2.0_x4:	---[RESPONSE]--------------------------------------2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	HTTP/1.1	400	Bad	Request2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	Connection:	close2017-11-02T10:35:08.674-0500	[DEBUG]
plugin.terraform-provider-aws_v1.2.0_x4:	Content-Length:	3022017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	Content-Type:	text/xml2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	Date:	Thu,	02	Nov	2017	15:35:06	GMT2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-
provider-aws_v1.2.0_x4:	X-Amzn-Requestid:	671462e3-bfe3-11e7-8eb2-57d99139006e2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	------------------------
-----------------------------2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017/11/02	10:35:08	[DEBUG]	[aws-sdk-go]	2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	Sender2017-11-02T10:35:08.674-
0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	ValidationError2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	Template	format	error:	unsupported	structure.2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-
provider-aws_v1.2.0_x4:	671462e3-bfe3-11e7-8eb2-57d99139006e2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	2017/11/02	10:35:08	[DEBUG]	[aws-sdk-go]	DEBUG:	Validate	Response	cloudformation/CreateStack	failed,	not
retrying,	error	ValidationError:	Template	format	error:	unsupported	structure.2017-11-02T10:35:08.674-0500	[DEBUG]	plugin.terraform-provider-aws_v1.2.0_x4:	status	code:	400,	request	id:	671462e3-bfe3-11e7-8eb2-57d99139006e2017/11/02	10:35:08	[TRACE]	root:	eval:	*terraform.EvalWriteState	While	trying	to	create	a	stack,	I'm	keeping	getting
this	error:operation	error	CloudFormation:	CreateStack,	https	response	error	StatusCode:	400,	RequestID:	xxxx-xxxx-xxxx,	api	error	ValidationError:	Template	format	error:	unsupported	structure.Since	the	same	template	file	works	fine	with	aws-cli,	I	guess	it's	something	to	do	with	the	TemplateBody	field.I	also	try	the	validate	template	api,	and	I	get
the	same	error	again	while	cli	works	well.Expected	Behaviorno	error	messageCurrent	Behavioroperation	error	CloudFormation:	CreateStack,	https	response	error	StatusCode:	400,	RequestID:	xxxx-xxxx-xxxx,	api	error	ValidationError:	Template	format	error:	unsupported	structure.Reproduction	Stepsokaws	cloudformation	validate-template	--
template-body	file:///absolute/path/template.yamlfailedpackage	main	import	("context"	"log"	"github.com/aws/aws-sdk-go-v2/aws"	"github.com/aws/aws-sdk-go-v2/config"	"github.com/aws/aws-sdk-go-v2/service/cloudformation")	func	main()	{	cfg,	_	:=	config.LoadDefaultConfig(context.TODO())	client	:=	cloudformation.NewFromConfig(cfg)	_,	err	:=
client.ValidateTemplate(context.TODO(),	&cloudformation.ValidateTemplateInput{	TemplateBody:	aws.String("file:///absolute/path/template.yaml"),	})	if	err	!=	nil	{	log.Fatal(err)}}Possible	SolutionNo	responseAdditional	Information/ContextNo	responseAWS	Go	SDK	V2	Module	Versions	Usedgithub.com/aws/aws-sdk-go-v2
v1.18.1github.com/aws/aws-sdk-go-v2/config	v1.18.27github.com/aws/aws-sdk-go-v2/credentials	v1.13.26github.com/aws/aws-sdk-go-v2/service/cloudformation	v1.30.0	August	2017	This	stumped	me	for	a	few	hours	yesterday	while	wanting	to	deploy	a	cloudformation	stack	to	AWS	via	PowerShell	using	New-CFNStack	instead	of	the	console,	I	kept
getting	the	following	error:	Test-CFNTemplate	:	Template	format	error:	unsupported	structure.	Not	overly	helpful,	I	checked	the	path	was	correct,	used	relative	and	full	file	paths	and	tried	with	file://	before	the	file	name	but	the	error	was	still	the	same.	To	check	that	there	wasnt	an	error	in	my	cloudformation	yaml	file,	I	deployed	it	successfully	via	the
AWS	console	and	thought	Id	try	the	Test-CFNTemplate	command	that	accepted	the	-TemplateBody	parameter	but	still	failed	with	the	same	error	message	as	New-CFNStack	Next	I	tried:	Test-CFNTemplate	-TemplateBody	(get-content	.\amazon-linux-vm.yaml)	This	gave	the	error:Test-CFNTemplate	:	Cannot	convert	'System.Object[]'	to	the	type
'System.String'	required	by	parameter	'TemplateBody'.	What	gives	here?Get-Content	reads	the	file	in	and	creates	a	list	of	objects	for	each	line.	If	you	were	to	save	get	content	to	a	variable,	then	access	the	first	item,	youd	get	the	whole	first	line	of	the	file	returned.$template	=	Get-Content	-Path	.\amazon-linux-
vm.yaml$template[0]AWSTemplateFormatVersion:	2010-09-09Use	the	-Raw	switchThe	Raw	switch,	although	not	well	documented	at	present,	will	read	in	the	whole	file	as	one	big	string	object	instead	of	a	separate	object	per	line.	To	demonstrate	this:$template1	=	Get-Content	-Path	.\amazon-linux-vm.yaml$template1[0]A	See	this	post	about	Get-
Content	and	why	its	not	your	friend	on	powershell.org	To	read	the	file	without	line	breaks,	use	the	-Raw	switch	and	the	cmdlet	should	now	work	correctly.	Test-CFNTemplate	-TemplateBody	(Get-Content	.\amazon-linux-vm.yaml	-Raw)	The	Test-CFNTemplate	will	now	run	correctly	and	youll	be	able	to	use	New-CFNStack	to	deploy	your	resources	via
cloudformation	with	PowerShell	making	it	easy	to	change	the	values	of	the	parameters	you	pass	in.	Tags:	aws,	cloudformation,	powershell	Categories:	aws	Updated:	August	25,	2017	This	is	unbelievably	confusing	and	a	very	poor	design	choice.	While	aws	cloudformation	validate-template	--template-body	S3_Bucket.template	fails	with	the	extremely
cryptic	error	message	A	client	error	(ValidationError)	occurred	when	calling	the	ValidateTemplate	operation:	Template	format	error:	unsupported	structure.	The	following	command	aws	cloudformation	validate-template	--template-body	file://S3_Bucket.template	--region	us-west-1	succeeds.	In	addition,	the	error	message	is	extremely	misleading,	as	it
implies	that	parsing	was	attempted	and	failed,	not	that	the	document	was	not	found/failed	to	be	loaded.	There	should	either	be	A	more	informative	error	message:	for	example	requiring	the	protocol	as	a	prefix	and	erring	when	one	is	not	specified,	or;The	--template-body	argument	should	be	interpreted	as	a	local	file	URI	by	default.Choose	one	of	the
following	solutions	based	on	the	error	message	that	you	receive:For	"JSON	not	well-formed"	or	"YAML	not	well-formed"	errors,	see	the	Validate	template	syntax	section.For	"Unresolved	resource	dependencies	[XXXXXXXX]	in	the	Resources	block	of	the	template"	errors,	see	the	Validate	logical	IDs	and	parameters	section.For	"Unrecognized	parameter
type:	XXXXXXXX"	or	"Invalid	template	parameter	property	'XXXXXXXX'"	errors,	see	the	Validate	parameter	definitions	section.For	"Every	Condition	member	must	be	a	string"	errors,	see	the	Confirm	that	Conditions	is	specified	as	a	string	section.For	"Unrecognized	resource	types:	[XXXXXXXX]"	errors,	see	the	Verify	the	availability	of	your	resource
type	section.For	"The	[environmental	resource]	'XXXXXXXX'	does	not	exist"	errors,	see	the	Verify	that	your	resource	exists	outside	the	stack,	or	validate	dependencies	for	resources	in	the	same	stack	section.For	"Invalid	template	property	or	properties	[XXXXXXXX]"	errors,	see	the	Verify	template	properties	section.For	"Invalid	policy	syntax"	or
"MalformedPolicy"	errors,	see	the	Verify	policy	syntax	for	any	IAM	policy	related	resources	section.ResolutionIf	you	receive	errors	when	you	run	AWS	Command	Line	Interface	(AWS	CLI)	commands,	then	see	Troubleshoot	AWS	CLI	errors.	Also,	make	sure	that	you're	using	the	most	recent	AWS	CLI	version.Validate	template	syntaxTo	follow	proper
JSON	or	YAML	syntax	in	your	CloudFormation	template,	consider	the	following:	Validate	logical	IDs	and	parametersConfirm	that	resource	logical	IDs	and	parameters	are	defined	in	your	template.In	the	following	JSON	and	YAML	templates,	test	is	referenced	for	the	ImageId	property.	However,	neither	template	includes	a	resource	logical	ID	nor	a
parameter	namedtest.	These	templates	return	the	following	error:	"Unresolved	resource	dependencies	[test]	in	the	Resources	block	of	the	template."	For	more	information	on	resource	definitions	and	their	syntax,	see	Resources.Example	JSON	(incorrect):{	"Resources"	:	{	"EC2Instance01"	:	{	"Type"	:	"AWS::EC2::Instance",	"Properties"	:	{	"ImageId"	:
{"Ref":	"test"}	}	}	}}Example	YAML	(incorrect):Resources:	EC2Instance01:	Type:	AWS::EC2::Instance	Properties:	ImageId:	!Ref	testTo	resolve	this	issue,	add	a	resource	logical	ID	that's	named	test.	Or,	create	a	parameter	that's	named	test	where	the	reference	returns	the	ImageId	value.	The	following	example	JSON	and	YAML	templates	include	a
parameter	with	the	name	test	and	ImageId	as	the	value.Example	JSON	(correct):{	"Parameters":	{	"test":	{	"Type":	"String",	"Default":	"ami-xxx"	}	},	"Resources"	:	{	"EC2Instance01"	:	{	"Type"	:	"AWS::EC2::Instance",	"Properties"	:	{	"ImageId"	:	{"Ref":	"test"}	}	}	}}Example	YAML	(correct):Parameters:	test:	Type:	String	Default:	ami-xxxResources:
EC2Instance01:	Type:	'AWS::EC2::Instance'	Properties:	ImageId:	!Ref	testValidate	parameter	definitions	In	the	following	example	JSON	and	YAML	templates,	the	default	value	for	ParameterC	has	the	intrinsic	function	Fn::Sub.	This	intrinsic	function	causes	the	validation	error:	"Every	Default	member	must	be	a	string."Example	JSON	(incorrect):{
"Parameters":	{	"ParameterA":	{	"Type":	"String",	"Default":	"abc"	},	"ParameterB":	{	"Type":	"String",	"Default":	"def"	},	"ParameterC":	{	"Type":	"String",	"Default":	{	"Fn::Sub":	"${ParameterA}-${ParameterB}"	}	}	},	"Resources":	{	"MyS3Bucket":	{	"Type":	"AWS::S3::Bucket",	"Properties":	{	"BucketName":	{	"Ref":	"ParameterC"	}	}	}	}}Example
YAML	(incorrect):Parameters:	ParameterA:	Type:	String	Default:	abc	ParameterB:	Type:	String	Default:	def	ParameterC:	Type:	String	Default:	!Sub	'${ParameterA}-${ParameterB}'Resources:	MyS3Bucket:	Type:	'AWS::S3::Bucket'	Properties:	BucketName:	!Ref	ParameterCConfirm	that	Conditions	is	specified	as	a	stringIn	your	CloudFormation
template,	specify	Conditions	as	a	string.The	following	example	JSON	and	YAML	templates	specify	the	condition	in	the	resource	EC2RouteA	as	a	list	of	strings	instead	of	a	single	string.	These	templates	result	in	the	following	validation	error:	"Every	Condition	member	must	be	a	string."Example	JSON	(incorrect):{	"Conditions":	{	"ConditionA":	{
"Fn::Not":	[{	"Fn::Equals":	["",	"Sample"]	}]	},	"ConditionB":	{	"Fn::Not":	[{	"Fn::Equals":	["",	"Sample"]	}]	}	},	"Resources":	{	"EC2RouteA":	{	"Type":	"AWS::EC2::Route",	"Condition":	["ConditionA",	"ConditionB"],	"Properties":	{	...	}	}	}}Example	YAML	(incorrect):Conditions:	ConditionA:	!Not	-	!Equals	-	''	-	Sample	ConditionB:	!Not	-	!Equals	-	''
-	SampleResources:	EC2RouteA:	Type:	'AWS::EC2::Route'	Condition:	-	ConditionA	-	ConditionB	Properties:To	resolve	this	error,	add	ConditionAandB	to	the	Conditions	section	of	your	template,	and	then	use	ConditionAandB	as	the	condition	for	the	EC2RouteA	resource.	See	the	following	example	JSON	and	YAML	templates.Example	JSON	(correct):{
"Conditions":	{	"ConditionA":	{	"Fn::Not":	[{	"Fn::Equals":	["",	"Sample"]	}]	},	"ConditionB":	{	"Fn::Not":	[{	"Fn::Equals":	["",	"Sample"]	}]	},	"ConditionAandB":	{	"Fn::And":	[{	"Condition":	"ConditionA"	},	{	"Condition":	"ConditionB"	}]	}	},	"Resources":	{	"EC2RouteA":	{	"Type":	"AWS::EC2::Route",	"Condition":	"ConditionAandB",	"Properties":
{	...	}	}	}}Example	YAML	(correct):Conditions:	ConditionA:	Fn::Not:	-	Fn::Equals:	-	''	-	Sample	ConditionB:	Fn::Not:	-	Fn::Equals:	-	''	-	Sample	ConditionAandB:	Fn::And:	-	Condition:	ConditionA	-	Condition:	ConditionBResources:	EC2RouteA:	Type:	AWS::EC2::Route	Condition:	ConditionAandB	Properties:Verify	the	availability	of	your	resource	type1.
Verify	that	your	resource	is	available	in	your	AWS	Region.Not	all	resource	types	are	available	in	every	AWS	Region.	Templates	that	include	resource	types	that	aren't	available	in	your	AWS	Region	result	in	the	following	error:	"Unrecognized	resource	types:	[XXXXXXXX]."2.	If	your	template	consists	of	any	serverless	resources,	then	include	a
Transform	declaration.	See	the	following	example	JSON	and	YAML	templates.Example	JSON:{	"Transform":	"AWS::Serverless-2016-10-31",	#Please	make	sure	to	include	this.	"Resources":	{	"MyServerlessFunctionLogicalID":	{	"Type":	"AWS::Serverless::Function",	"Properties":	{	"Handler":	"index.handler",	"Runtime":	"nodejs8.10",	"CodeUri":
"s3://testBucket/mySourceCode.zip"	}	}	}}Example	YAML:Transform:	AWS::Serverless-2016-10-31	#Please	make	sure	to	include	this.Resources:	MyServerlessFunctionLogicalID:	Type:	AWS::Serverless::Function	Properties:	Handler:	index.handler	Runtime:	nodejs8.10	CodeUri:	's3://testBucket/mySourceCode.zip'Verify	that	your	resource	exists
outside	the	stack,	or	validate	dependencies	for	resources	in	the	same	stackIf	you're	hardcoding	a	resource	or	Amazon	Resource	Name	(ARN)	into	one	of	your	stack's	resources	for	one	that's	outside	of	the	CloudFormation	stack,	then	verify	the	following:The	resource	name	or	ARN	is	correct.The	resource	exists.The	resource	exists	in	the	same	AWS
Region	as	the	stack.	Consider	that	some	resources	accept	properties	across	AWS	Regions	or	accounts.For	example,	an	AWS::EC2::Instance	resource	in	your	stack	that	specifies	a	security	group	(sg-1234567890)	fails	if:The	security	group	doesn't	exist.The	security	group	doesn't	exist	in	the	stack's	AWS	Region.As	a	result,	you	receive	the	error
message:	"The	sg-1234567890	does	not	exist."	See	the	following	example:LinuxInstance:	Type:	AWS::EC2::Instance	Properties:	SubnetId:	!Ref	ServerSubnetID	KeyName:	!Ref	EC2KeyPairName	SecurityGroupIds:	sg-1234567890	#Verify	template	propertiesUse	only	permitted	template	properties	in	your	CloudFormation	template.The	following
example	JSON	and	YAML	templates	set	the	bucket	resource	on	the	same	level	as	theResources	section.	This	returns	the	following	error:	"Template	validation	error:	Invalid	template	property	or	properties	[Bucket]."	This	error	is	caused	when	the	CloudFormation	template	validator	sees	the	bucket	resource	as	a	section-level	specification.	A	section-
level	specification	isn't	allowed	as	a	template	property.Example	JSON	(incorrect):{	"Resources":	{	"WaitCondition":	{	"Type":	"AWS::CloudFormation::WaitCondition"	}	},	#	"Bucket":	{	"Type":	"AWS::S3::Bucket",	"Properties":	{	"Name":	"BucketName"	}	}}Example	YAML	(incorrect):Resources:	WaitCondition:	Type:
AWS::CloudFormation::WaitConditionBucket:	#	Type:	AWS::S3::Bucket	Properties:	Name:	BucketNameTo	resolve	this	issue,	correct	the	formatting	so	that	the	bucket	resource	is	specified	inside	the	Resources	section.	See	the	following	example	JSON	and	YAML	templates	that	are	correctly	formatted.Example	JSON	(correct):{	"Resources":	{
"WaitCondition":	{	"Type":	"AWS::CloudFormation::WaitCondition"	},	"Bucket":	{	"Type":	"AWS::S3::Bucket",	"Properties":	{	"Name":	"BucketName"	}	}	}}Example	YAML	(correct):Resources:	WaitCondition:	Type:	'AWS::CloudFormation::WaitCondition'	Bucket:	Type:	'AWS::S3::Bucket'	Properties:	Name:	BucketNameVerify	policy	syntax	for	any	IAM
policy-related	resourcesIf	you're	creating	an	Identity	and	Access	Management	(IAM)	policy	resource	or	related	configuration	in	your	resource	properties,	verify	that	the	policy	is	valid	with	this	structure	base.{	"Resources":	{	"Policy":	{	"Type":	"AWS::IAM::Policy",	"Properties":	{	"PolicyName":	"IamPolicyName",	"PolicyDocument":	{	"Version":	"2012-
10-17",	"Statement":	[{	"Effect":	"effect",	"Action":	[":",	""],	"Resource":	"desiredResourceARN",	"Condition":	{	"ConditionConfiguration":	{	"conditionKey":	["values"]	},	"ConditionConfiguration2":	""	}	}]	}	}	}	}	}Note:	Replace	with	a	service	name	of	your	choice.	Replace	with	the	API	action	for	your	selected	service.	For	more	information,	seeIAM
JSON	policy.Integrate	your	JSON	policy	document	with	a	YAML	formatYou	might	want	to	integrate	a	JSON	policy	document	with	a	YAML	format	template	for	provisioning	CloudFormation.	This	requires	you	to	change	how	the	document	appears	in	the	template.After	integration,	the	policy	elements	look	similar	to	what's	shown	below:Resources:	Policy:
Type:	'AWS::IAM::Policy'	Properties:	PolicyName:	IamPolicyName	PolicyDocument:	Version:	2012-10-17	Statement:	-	Effect:	effect	Action:	-	':'	-	Resource:	desiredResourceARN	Condition:	ConditionConfiguration:	conditionKey:	-	values	ConditionConfiguration2:	Hi	everyone,I'm	trying	to	deploy	multi-region	StackSets	but	get	the	following
error:Template	format	error:	Unrecognized	resource	types:	[AWS::SES::Template]The	resource	type	definition	is	correct	according	to	the	CloudFormation	documentation	and	previous	tests	I	executed	with	standard	CloudFormation	stacks.	Using	simple	stacks	within	the	region	of	choice	the	template	the	resources	get	provisioned	successfully.	But	why
is	CloudFormation	StackSet	unable	to	deploy	the	AWS::SES::Template	resource?The	region	of	choice	is	eu-west-1	if	this	makes	any	difference.Would	be	great	to	get	some	help	and	if	it	is	a	bug	to	address	this	to	the	AWS	support	team.Best	regards	and	thanks	in	advance!NewestMost	votesMost	commentsWhich	regions	are	you	deploying	the	Stack	Set
to?	If	you	try	to	deploy	to	a	region	which	doesn't	has	SES	or	support	that	resource,	you'll	get	that	error.	You	should	limit	your	Stack	Set	deployment	to	just	supported	regions.	You	could	also	(if	there	are	other	resources	in	the	template	you	still	want	to	deploy)	use	a	Condition	to	only	deploy	the	Template	in	a	suitable	region(s).For	reference,	I	quickly
put	together	a	minimal	template	with	the	AWS::SES::Template	resource	in,	and	checked	the	region	support	with	the	cfn-lint	tool:%	cat	ses.yamlAWSTemplateFormatVersion:	2010-09-09Resources:	Template:	Type:	AWS::SES::Template	Properties:	Template:	HtmlPart:	Testing	SubjectPart:	Testing	TemplateName:	Testing	TextPart:	Testing%	cfn-lint	-r
ALL_REGIONS	--	ses.yamlE3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	af-south-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ap-east-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ap-northeast-2ses.yaml:5:5E3001
Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ap-northeast-3ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ap-south-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ap-southeast-2ses.yaml:5:5E3001	Invalid	or	unsupported
Type	AWS::SES::Template	for	resource	Template	in	ap-southeast-3ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	ca-central-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	cn-north-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for
resource	Template	in	cn-northwest-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	eu-central-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	eu-west-2ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	sa-east-
1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	us-gov-east-1ses.yaml:5:5E3001	Invalid	or	unsupported	Type	AWS::SES::Template	for	resource	Template	in	us-gov-west-1ses.yaml:5:5As	per	the	documentation,	the	resource	type	is	correct,	and	also	the	region	you	selected	is	supported.	Please	refer	to	link
{1}But	Before	you	perform	"Multi-region	Deployment	With	AWS	Cloudformation	Stacksets",	you	need	to	set	up	permissions	for	cloud	formation	stacksets.AWS	CloudFormation	StackSets	requires	specific	permissions	to	be	able	to	deploy	stacks	in	multiple	AWS	accounts	across	multiple	AWS	Regions.	It	needs	an	administrator	role	that	is	used	to
perform	StackSets	operations,	and	an	execution	role	to	deploy	the	actual	stacks	in	target	accounts.These	roles	require	specific	naming	conventions:***AWSCloudFormationStackSetAdministrationRole	***for	the	administrator	role,	and	**AWSCloudFormationStackSetExecutionRole	for	the	execution	role.Note:	StackSets	execution	will	fail	if	either	of
these	roles	are	missing.The	***AWSCloudFormationStackSetAdministrationRole	***should	be	created	in	the	account	where	you	are	creating	the	StackSet.The	***AWSCloudFormationStackSetExecutionRole	***should	be	created	in	each	target	account	where	you	wish	to	deploy	the	stack.{1}	hope	this	helps.answered	3	years	agolg...Thank	you	for	your
support.	The	error	is	not	permission	related	though.	For	verification:	I	already	deployed	SSM	parameters	using	the	same	setup,	even	the	same	template	file.	The	only	new	thing	to	the	CloudFormation	template	file	are	the	AWS::SES::Template	resources,	which	CloudFormation	StackSet	doesn't	seem	to	like	or	recognize.I	already	get	the	error	message
when	I	upload	the	CloudFormation	template	via	AWS	Management	Console	>	CloudFormation	>	StackSets.	Same	happens	programmatically.answered	3	years	agolg...	Reddit	and	its	partners	use	cookies	and	similar	technologies	to	provide	you	with	a	better	experience.	By	accepting	all	cookies,	you	agree	to	our	use	of	cookies	to	deliver	and	maintain
our	services	and	site,	improve	the	quality	of	Reddit,	personalize	Reddit	content	and	advertising,	and	measure	the	effectiveness	of	advertising.	By	rejecting	non-essential	cookies,	Reddit	may	still	use	certain	cookies	to	ensure	the	proper	functionality	of	our	platform.	For	more	information,	please	see	our	Cookie	Notice	and	our	Privacy	Policy.	You	can
author	CloudFormation	templates	in	JSON	or	YAML	formats.	Both	formats	serve	the	same	purpose	but	offer	distinct	advantages	in	terms	of	readability	and	complexity.	JSON	JSON	is	a	lightweight	data	interchange	format	that's	easy	for	machines	to	parse	and	generate.	However,	it	can	become	cumbersome	for	humans	to	read	and	write,	especially	for
complex	configurations.	In	JSON,	the	template	is	structured	using	nested	braces	{}	and	brackets	[]	to	define	resources,	parameters,	and	other	components.	Its	syntax	requires	explicit	declaration	of	every	element,	which	can	make	the	template	verbose	but	ensures	strict	adherence	to	a	structured	format.	YAML	YAML	is	designed	to	be	more	human-
readable	and	less	verbose	than	JSON.	It	uses	indentation	rather	than	braces	and	brackets	to	denote	nesting,	which	can	make	it	easier	to	visualize	the	hierarchy	of	resources	and	parameters.	YAML	is	often	preferred	for	its	clarity	and	ease	of	use,	especially	when	dealing	with	more	complex	templates.	However,	YAML's	reliance	on	indentation	can	lead
to	errors	if	the	spacing	is	not	consistent,	which	requires	careful	attention	to	maintain	accuracy.	Template	structure	CloudFormation	templates	are	divided	into	different	sections,	and	each	section	is	designed	to	hold	a	specific	type	of	information.	Some	sections	must	be	declared	in	a	specific	order,	and	for	others,	the	order	doesn't	matter.	However,	as
you	build	your	template,	it	can	be	helpful	to	use	the	logical	order	shown	in	the	following	examples	because	values	in	one	section	might	refer	to	values	from	a	previous	section.	When	authoring	templates,	don't	use	duplicate	major	sections,	such	as	the	Resources	section.	Although	CloudFormation	might	accept	the	template,	it	will	have	an	undefined
behavior	when	processing	the	template,	and	might	incorrectly	provision	resources,	or	return	inexplicable	errors.	The	following	example	shows	the	structure	of	a	JSON-formatted	template	with	all	available	sections.	{	"AWSTemplateFormatVersion"	:	"version	date",	"Description"	:	"JSON	string",	"Metadata"	:	{	template	metadata	},	"Parameters"	:	{	set
of	parameters	},	"Rules"	:	{	set	of	rules	},	"Mappings"	:	{	set	of	mappings	},	"Conditions"	:	{	set	of	conditions	},	"Transform"	:	{	set	of	transforms	},	"Resources"	:	{	set	of	resources	},	"Outputs"	:	{	set	of	outputs	}}	The	following	example	shows	the	structure	of	a	YAML-formatted	template	with	all	available	sections.	---AWSTemplateFormatVersion:
version	date	Description:	String	Metadata:	template	metadata	Parameters:	set	of	parameters	Rules:	set	of	rules	Mappings:	set	of	mappings	Conditions:	set	of	conditions	Transform:	set	of	transforms	Resources:	set	of	resources	Outputs:	set	of	outputs	In	JSON-formatted	templates,	comments	are	not	supported.	JSON,	by	design,	doesn't	include	a	syntax
for	comments,	which	means	you	can't	add	comments	directly	within	the	JSON	structure.	However,	if	you	need	to	include	explanatory	notes	or	documentation,	you	can	consider	adding	metadata.	For	more	information,	see	Metadata	attribute.	In	YAML-formatted	templates,	you	can	include	inline	comments	by	using	the	#	symbol.	The	following	example
shows	a	YAML	template	with	inline	comments.	AWSTemplateFormatVersion:	2010-09-09Description:	A	sample	CloudFormation	template	with	YAML	comments.#	Resources	sectionResources:	MyEC2Instance:	Type:	AWS::EC2::Instance	Properties:	#	Linux	AMI	ImageId:	ami-1234567890abcdef0	InstanceType:	t2.micro	KeyName:	MyKey
BlockDeviceMappings:	-	DeviceName:	/dev/sdm	Ebs:	VolumeType:	io1	Iops:	200	DeleteOnTermination:	false	VolumeSize:	20	Specifications	CloudFormation	supports	the	following	JSON	and	YAML	specifications:	JSON	CloudFormation	follows	the	ECMA-404	JSON	standard.	For	more	information	about	the	JSON	format,	see	.	YAML	CloudFormation
supports	the	YAML	Version	1.1	specification	with	a	few	exceptions.	CloudFormation	doesn't	support	the	following	features:	The	binary,	omap,	pairs,	set,	and	timestamp	tags	Aliases	Hash	merges	For	more	information	about	YAML,	see	.	Learn	more	For	each	resource	you	specify	in	your	template,	you	define	its	properties	and	values	using	the	specific
syntax	rules	of	either	JSON	or	YAML.	For	more	information	about	the	template	syntax	for	each	format,	see	CloudFormation	template	sections.	AWS	CloudFormation	is	a	powerful	service	designed	to	help	you	manage	your	infrastructure	as	code	(IaC).	However,	as	with	any	coding	task,	you	might	encounter	errors	while	working	with	CloudFormation
templates.	Debugging	these	errors	can	be	frustrating,	particularly	when	you're	in	the	middle	of	developing	or	deploying	your	infrastructure.	This	blog	post	aims	to	guide	you	through	common	CloudFormation	template	errors,	their	potential	causes,	and	how	to	fix	them	effectively.What	is	CloudFormation?Before	diving	into	the	debugging	process,	lets
briefly	discuss	what	AWS	CloudFormation	is.	AWS	CloudFormation	allows	you	to	define	your	cloud	resources	in	a	declarative	manner	using	JSON	or	YAML	templates.	This	means	you	get	to	describe	what	your	infrastructure	should	look	like,	and	CloudFormation	takes	care	of	the	how.Why	Use	CloudFormation?Using	AWS	CloudFormation	provides
numerous	benefits:Infrastructure	as	Code	(IaC):	Improve	consistency	and	reduce	human	error.Version	Control:	Just	like	application	code,	infrastructure	can	be	versioned	and	rolled	back.Automation:	Simplify	the	process	of	resource	provisioning	and	management.Template	Reusability:	Share	templates	with	teams	and	utilize	them	in	multiple
environments.Understanding	Common	CloudFormation	ErrorsNow,	let's	delve	into	common	CloudFormation	template	errors	you	might	encounter.1.	JSON	vs.	YAML	Format	IssuesCloudFormation	templates	can	be	written	in	either	JSON	or	YAML	format.	Mixing	these	formats	within	the	same	template	or	incorrectly	formatting	them	will	lead	to
validation	errors.Example	Template:Resources:	MyBucket:	Type:	AWS::S3::Bucket	Properties:	BucketName:	MyUniqueBucketNameCommon	Issue:If	the	above	snippet	were	written	in	JSON	but	failed	to	correctly	format	the	syntax,	you	might	get	an	error	like:Error:	Unable	to	parse	JSON	template.	Invalid	JSON	format.Solution:	Always	ensure
consistency	in	your	format.	Using	a	linter	can	help	catch	these	issues	early.	YAML	Lint	is	a	popular	choice	for	validating	YAML.2.	Incorrect	Resource	TypesAnother	common	pitfall	is	specifying	resource	types	incorrectly.	All	resources	listed	in	a	template	must	be	valid	CloudFormation	resource	types.Example:{	"Resources":	{	"MyBucket":	{	"Type":
"AWS::S3::Bkt",	//	Incorrect	resource	type	"Properties":	{	"BucketName":	"MyUniqueBucketName"	}	}	}}Error	Message:"An	error	occurred	(ValidationError)	when	calling	the	CreateStack	operation:	Template	format	error:	Unrecognized	resource	types:	[AWS::S3::Bkt]"Solution:	Make	sure	to	consult	the	AWS	Resource	Types	Reference	to	verify
resource	types.3.	Missing	Required	PropertiesOmitting	required	properties	for	resources	defined	in	the	template	can	lead	to	deployment	failures.Example:Resources:	MyBucket:	Type:	AWS::S3::Bucket	Properties:	{}	#	Required	property	omitted	Error	Message:"An	error	occurred	(ValidationError)	when	calling	the	CreateStack	operation:	Template
validation	failed:	The	Resource	of	type	'AWS::S3::Bucket'	must	contain	the	property	'BucketName'."Solution:	Always	refer	to	the	documentation	for	the	specific	resource	you	are	using	to	identify	required	properties.4.	Dependency	IssuesSometimes,	resources	depend	on	each	other.	If	you	declare	these	dependencies	incorrectly,	CloudFormation	may
fail	to	create	stacks.Example:Resources:	MyBucket:	Type:	AWS::S3::Bucket	Properties:	BucketName:	MyUniqueBucketName	MyBucketPolicy:	Type:	AWS::S3::BucketPolicy	Properties:	Bucket:	!Ref	MyBucket	PolicyDocument:	Version:	"2012-10-17"	Statement:	-	Effect:	"Allow"	Principal:	"*"	Action:	"s3:GetObject"	Resource:	!Sub
"${MyBucket.Arn}/*"Error	Message:"An	error	occurred	(ValidationError)	when	calling	the	CreateStack	operation:	Template	contains	circular	dependency	between	resources."Solution:	Use	the	DependsOn	attribute	to	define	an	explicit	ordering	if	needed.	Here's	an	example:Resources:	MyBucket:	Type:	AWS::S3::Bucket	Properties:	BucketName:
MyUniqueBucketName	MyBucketPolicy:	Type:	AWS::S3::BucketPolicy	DependsOn:	MyBucket	#	This	is	the	key	fix.	Properties:	...5.	Parameter	Type	MismatchesParameters	are	defined	at	the	start	of	your	template	and	can	accept	inputs	when	stacks	are	created.	Incorrect	usage	of	parameter	types	can	lead	to	errors.Example:Parameters:	InstanceType:
Type:	String	#	Should	be:	Type:	'AWS::EC2::InstanceType'Error	Message:"An	error	occurred	(ValidationError)	when	calling	the	CreateStack	operation:	Template	format	error:	Parameter	instance	'InstanceType'	value	must	be	of	type	list	and	value	cannot	be	null."Solution:	Always	ensure	the	parameters	match	the	expected	CloudFormation	parameter
types.	Check	the	AWS	CloudFormation	Parameters	documentation	for	details.6.	Intrinsic	Function	ErrorsIntrinsic	functions	such	as	!Ref,	!GetAtt,	and	!Sub	allow	dynamic	references	in	your	templates.	Improper	usage	can	lead	to	failures.Example:Outputs:	BucketName:	Value:	!Ref	"MyBucket"	#	Correct	usage	Description:	"The	name	of	the	S3
Bucket"Error	Message:"An	error	occurred	(ValidationError)	when	calling	the	CreateStack	operation:	Template	format	error:	Invalid	intrinsic	function	or	reference."Solution:	Review	the	correctness	of	your	intrinsic	functions.	Make	sure	placeholders	are	appropriately	used.Debugging	TipsUse	the	AWS	CloudFormation	Designer:	AWS	provides	a
graphical	interface	to	help	visualize	CloudFormation	templates.	This	can	help	in	identifying	misconfigurations.Review	the	Events	Tab:	When	troubleshooting,	check	the	Events	tab	in	the	AWS	CloudFormation	console	for	detailed	error	messages.Use	AWS	CLI	for	Validation:	You	can	validate	a	CloudFormation	template	using	the	AWS	CLI:aws
cloudformation	validate-template	--template-body	file://template.yamlLeverage	Stack	Overflow	&	AWS	Forums:	If	you're	stuck,	theres	a	high	chance	someone	else	has	encountered	a	similar	issue.Final	ThoughtsDebugging	CloudFormation	template	errors	can	be	daunting.	However,	with	proper	strategies	validating	syntax,	understanding	intrinsic
functions,	and	correctly	defining	resource	types	and	parameters	you	can	efficiently	troubleshoot	and	ensure	successful	deployments.By	understanding	common	pitfalls	and	knowing	how	to	resolve	them,	youll	save	yourself	time	and	avoid	potential	frustration.	For	a	deeper	dive	into	infrastructure	as	code	principles,	check	AWS	CloudFormation	User
Guide	and	begin	writing	effective	CloudFormation	templates	today!Feel	free	to	comment	below	if	you	have	any	specific	questions	or	experiences	you	would	like	to	share	regarding	CloudFormation	errors!	Happy	coding!

Template	format	error	unsupported	structure.	Aws	cloudformation	unsupported	structure.	Aws	cloudformation	template	format	error	unsupported	structure.	Cfn	template	format	error	unsupported	structure.

